An approach to the analysis of propagation of elastic waves in grids made of rods of varying curvature
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 365-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The influence of structural irregularity of lattice structures on the propagation of elastic waves in these structures was analyzed. The modeling was performed within the framework of solid body mechanics using the beam model of plane lattice structures. It was assumed that these structures are made of curvilinear elastic beams of varying curvature. Such structures can be made by additive manufacturing. The computations were performed by the finite-element method using the FIDESYS software. The propagation of waves was investigated for two types of lattice structures: elevator and star-shaped lattices. The results of computations show that the wave in these structures is propagated slower than in the classical structure with straight beams. The wave in the star-shaped lattice is propagated slower than in the elevator lattice. The results for the lattices with uniformly curved beams were compared with the results for the grids made of beams of varying curvature. The effect of wave frequency on the propagation of elastic waves in lattice structures was analyzed. The conceptual model of a device for wave frequency measuring was proposed for monochrome waves. The results can be used for design of filters, dampers of vibrations, and devices for wave frequency measuring.
Keywords: lattice structure, graded structures, elastic waves, additive manufacturing, finite-element method, frequency filtering of waves.
@article{UZKU_2019_161_3_a3,
     author = {V. A. Levin and K. M. Zingerman and A. V. Vershinin and I. A. Podpruzhnikov},
     title = {An approach to the analysis of propagation of elastic waves in grids made of rods of varying curvature},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {365--376},
     year = {2019},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a3/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - K. M. Zingerman
AU  - A. V. Vershinin
AU  - I. A. Podpruzhnikov
TI  - An approach to the analysis of propagation of elastic waves in grids made of rods of varying curvature
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 365
EP  - 376
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a3/
LA  - ru
ID  - UZKU_2019_161_3_a3
ER  - 
%0 Journal Article
%A V. A. Levin
%A K. M. Zingerman
%A A. V. Vershinin
%A I. A. Podpruzhnikov
%T An approach to the analysis of propagation of elastic waves in grids made of rods of varying curvature
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 365-376
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a3/
%G ru
%F UZKU_2019_161_3_a3
V. A. Levin; K. M. Zingerman; A. V. Vershinin; I. A. Podpruzhnikov. An approach to the analysis of propagation of elastic waves in grids made of rods of varying curvature. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 365-376. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a3/

[1] I. B. Vendik, O. G. Vendik, “Metamaterials and their application in ultrahigh-frequency engineering”, Zh. Tekh. Fiz., 83:1 (2013), 3–28 (In Russian)

[2] L. Cheng, X. Liang, J. Bai, Q. Chen, J. Lemon, A. To, “On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing”, Addit. Manuf., 27 (2019), 290–304 | DOI

[3] G. Trainiti, J. J. Rimoli, M. Ruzzene, “Wave propagation in undulated structural lattices”, Int. J. Solids Struct., 97–98 (2016), 431–444 | DOI

[4] J. Fish, K. Shek, “Multiscale analysis of composite materials and structures”, Compos. Sci. Technol., 60:12–13 (2000), 2547–2556 | DOI

[5] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge Univ. Press, Cambridge, 1997, 510 pp.

[6] A. S. Phani, J. Woodhouse, N. Fleck, “Wave propagation in two-dimensional periodic lattices”, J. Acoust. Soc. Am., 119:4 (2006), 1995–2005 | DOI

[7] A. A. Vasiliev, S. V. Dmitriev, A. E. Miroshnichenko, “Multi-field modeling of a Cosserat lattice: Models, wave filtering, and boundary effects”, Eur. J. Mech. A/Solids, 46 (2014), 96–105 | DOI | Zbl

[8] L. I. Sedov, Continuum Mechanics, v. 2, Nauka, M., 1970, 568 pp. (In Russian)

[9] B. E. Pobedrya, D. V. Georgievskiy, Fundamentals of Continuum Mechanics, A Course of Lectures, Fizmatlit, M., 2006, 272 pp. (In Russian)

[10] M. E. Eglit, Lectures on Continuum Mechanics, Izd. Mosk. Univ., M., 2008, 318 pp. (In Russian)

[11] V. A. Levin, A. V. Vershinin, Numerical Methods. Parallel Computing, v. 2, Fizmatlit, M., 2015, 544 pp. (In Russian)

[12] E. M. Morozov, V. A. Levin, A. V. Vershinin, Strength Analysis. Fidesys in the Hands of an Engineer, URSS, M., 2015, 408 pp. (In Russian)

[13] V. A. Levin, A. V. Vershinin, “Industrial package for engineering strength analysis”, Proc. XI All-Russ. Congress on Fundamental Problems of Theoretical and Applied Mechanics (Kazan, Aug. 20–24, 2015), Kazan. Univ., Kazan, 2015, 2281–2283 (In Russian)

[14] V. A. Levin, A. V. Vershinin, I. A. Mishin, A. M. Sboichakov, K. A. Petrovskii, “Propagation of elastic waves in nonlinear media with initial strains”, Computer modeling in CAE Fidesys, 2012, no. 4, 29–32 (In Russian)

[15] V. A. Levin, A. V. Vershinin, “To modeling of elastic wave propagation in inhomogeneous media using parallel computing (CUDA technology)”, Proc. Int. Sci. Conf. “Modern Problems of Mathematics, Mechanics, and Informatics” (Tula, Nov. 23–27, 2009), TulGU, Tula, 2009, 215–217 (In Russian)

[16] V. A. Levin, A. V. Vershinin, K. M. Zingerman, “Numerical analysis of propagation of nonlinear waves in prestressed solids”, Modern Appl. Sci., 10:4 (2016), 158–167 | DOI

[17] M. Charara, A. Vershinin, D. Sabitov, G. Pekar, “SEM wave propagation in complex media with tetrahedral to hexahedral mesh”, Proc. 73rd Eur. Association of Geoscientists and Engineers Conf. and Exhib. (Vienna, Austria, 2011), 2011

[18] CAE Fidesys, https://cae-fidesys.com/