Numerical simulation of natural convection in a freezing soil
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 327-340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A mathematical model and a numerical method for solving the natural convection and crystallization of pore moisture were considered. The mathematical model contains partial differential equations for temperature, velocity, and pressure. The fluid flow, under the assumption of low velocities, was described by the Stokes equations, where the phase transition of the liquid into ice was taken into account using the fictitious domain method by introducing an additional term responsible for the flow in frozen ground with a low permeability coefficient. The discontinuous finite element method on unstructured computational meshes was used for the numerical solution of the problem of modeling a multiphysical process in complex geometric domains. The fictitious domain method for the flow problem enables to carry out calculations on a fixed computational grid. The results of the numerical solution of the two-dimensional problem for three test geometric domains were presented.
Keywords: mathematical modeling, heat and mass transfer, flow and transport, fictitious domain method, finite element method.
Mots-clés : phase transition
@article{UZKU_2019_161_3_a0,
     author = {V. N. Alekseev and M. V. Vasilyeva and V. I. Vasilyev and N. I. Sidnyaev},
     title = {Numerical simulation of natural convection in a freezing soil},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {327--340},
     year = {2019},
     volume = {161},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a0/}
}
TY  - JOUR
AU  - V. N. Alekseev
AU  - M. V. Vasilyeva
AU  - V. I. Vasilyev
AU  - N. I. Sidnyaev
TI  - Numerical simulation of natural convection in a freezing soil
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 327
EP  - 340
VL  - 161
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a0/
LA  - ru
ID  - UZKU_2019_161_3_a0
ER  - 
%0 Journal Article
%A V. N. Alekseev
%A M. V. Vasilyeva
%A V. I. Vasilyev
%A N. I. Sidnyaev
%T Numerical simulation of natural convection in a freezing soil
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 327-340
%V 161
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a0/
%G ru
%F UZKU_2019_161_3_a0
V. N. Alekseev; M. V. Vasilyeva; V. I. Vasilyev; N. I. Sidnyaev. Numerical simulation of natural convection in a freezing soil. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 327-340. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a0/

[1] E. T. Chung, W. T. Leung, M. Vasilyeva, Y. Wang, “Multiscale model reduction for transport and flow problems in perforated domains”, J. Comput. Appl. Math, 330:2 (2018), 519–535 | DOI | MR | Zbl

[2] V. N. Alekseev, M. V. Vasilyeva, S. P. Stepanov, “Iterative methods for solving the problem of transfer and flow in perforated domains”, Vestn. Sev. Vost. Fed. Univ. im. M.K. Ammosova, 2016, no. 5, 67–79 (In Russian)

[3] A. A. Samarskii, P. N. Vabishchevich, Computational Heat Transfer, Librokom, M., 2009 (In Russian)

[4] V. I. Vasilyev, N. I. Sidnyaev, A. A. Fedotov, Yu. S. Il'ina, M. V. Vasilyeva, S. P. Stepanov, Modeling the Distribution of Non-Stationary Temperature Fields in the Permafrost Zone in the Design of Geotechnical Facilities, Kurs, M., 2017, 624 pp. (In Russian)

[5] P. N. Vabishchevich, M. V. Vasilyeva, N. V. Pavlova, “Numerical simulation of thermal stabilization of filter soils”, Math. Models Comput. Simul., 7:2 (2015), 154–164 | DOI | MR

[6] P. N. Vabishchevich, M. V. Vasilyeva, V. F. Gornov, N. V. Pavlova, “Mathematical modeling of the artificial freezing of soils”, Vychisl. Tekhnol., 19:4 (2014), 19–31 (In Russian)

[7] N. V. Pavlova, P. N. Vabishchevich, Vasilyeva M. V., “Mathematical modeling of thermal stabilization of vertical wells on high performance computing systems”, Large-Scale Scientific Computing, LSSC 2013, Lecture Notes in Computer Science, 8353, eds. Lirkov I., Margenov S., Wasniewski J., Springer, Berlin–Heidelberg, 2013, 636–643 | DOI | MR

[8] Y. Belhamadia, A. S. Kane, A. Fortin, “A mixed finite element formulation for solving phase change problems with convection”, Proc. 20th Annu. Conf. of the CFD Society of Canada, 2012 http://www.sinmec.ufsc.br/d̃ihlmann/MALISKA/proceedings_cfd_society_of_canada_conference_may_2012/papers/Belhamadia_Kane_Fortin.pdf/ | MR | Zbl

[9] P. N. Vabishchevich, Fictitious Domain Method in Problems of Mathematical Physics, Izd. Mosk. Univ., M., 1991, 156 pp. (In Russian)

[10] O. Iliev, Z. Lakdawala, V. Starikovicius, “On a numerical subgrid upscaling algorithm for Stokes–Brinkman equations”, Comput. Math. Appl, 65:3 (2013), 435–448 | DOI | MR | Zbl

[11] O. P. Iliev, R. D. Lazarov, J. Willems, “Discontinuous Galerkin subgrid finite element method for heterogeneous Brinkman's equations”, Large-Scale Scientific Computing, LSSC 2009, Lecture Notes in Computer Science, 5910, eds. Lirkov I., Margenov S., Wasniewski J., Springer, Berlin–Heidelberg, 2009, 14–25 | DOI | MR

[12] S. Stepanov, M. Vasilyeva, V. I. Vasil'ev, “Generalized multiscale discontinuous Galerkin method for solving the heat problem with phase change”, J. Comput. Appl. Math., 340 (2018), 645–652 | DOI | MR | Zbl

[13] E. T. Chung, Y. Efendiev, M. Vasilyeva, Y. Wang, “A multiscale discontinuous Galerkin method in perforated domains”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 42:2 (2016), 212–229 | MR | Zbl

[14] A. Logg, K. A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin–Heidelberg, 2012, xiii+731 pp. | DOI | MR | Zbl

[15] C. Geuzaine, J. F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities”, Int. J. Numer. Methods Eng., 79:11 (2009), 1309–1331 | DOI | MR | Zbl