Mots-clés : phase transition
@article{UZKU_2019_161_3_a0,
author = {V. N. Alekseev and M. V. Vasilyeva and V. I. Vasilyev and N. I. Sidnyaev},
title = {Numerical simulation of natural convection in a freezing soil},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {327--340},
year = {2019},
volume = {161},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a0/}
}
TY - JOUR AU - V. N. Alekseev AU - M. V. Vasilyeva AU - V. I. Vasilyev AU - N. I. Sidnyaev TI - Numerical simulation of natural convection in a freezing soil JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 327 EP - 340 VL - 161 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a0/ LA - ru ID - UZKU_2019_161_3_a0 ER -
%0 Journal Article %A V. N. Alekseev %A M. V. Vasilyeva %A V. I. Vasilyev %A N. I. Sidnyaev %T Numerical simulation of natural convection in a freezing soil %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 327-340 %V 161 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a0/ %G ru %F UZKU_2019_161_3_a0
V. N. Alekseev; M. V. Vasilyeva; V. I. Vasilyev; N. I. Sidnyaev. Numerical simulation of natural convection in a freezing soil. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 3, pp. 327-340. http://geodesic.mathdoc.fr/item/UZKU_2019_161_3_a0/
[1] E. T. Chung, W. T. Leung, M. Vasilyeva, Y. Wang, “Multiscale model reduction for transport and flow problems in perforated domains”, J. Comput. Appl. Math, 330:2 (2018), 519–535 | DOI | MR | Zbl
[2] V. N. Alekseev, M. V. Vasilyeva, S. P. Stepanov, “Iterative methods for solving the problem of transfer and flow in perforated domains”, Vestn. Sev. Vost. Fed. Univ. im. M.K. Ammosova, 2016, no. 5, 67–79 (In Russian)
[3] A. A. Samarskii, P. N. Vabishchevich, Computational Heat Transfer, Librokom, M., 2009 (In Russian)
[4] V. I. Vasilyev, N. I. Sidnyaev, A. A. Fedotov, Yu. S. Il'ina, M. V. Vasilyeva, S. P. Stepanov, Modeling the Distribution of Non-Stationary Temperature Fields in the Permafrost Zone in the Design of Geotechnical Facilities, Kurs, M., 2017, 624 pp. (In Russian)
[5] P. N. Vabishchevich, M. V. Vasilyeva, N. V. Pavlova, “Numerical simulation of thermal stabilization of filter soils”, Math. Models Comput. Simul., 7:2 (2015), 154–164 | DOI | MR
[6] P. N. Vabishchevich, M. V. Vasilyeva, V. F. Gornov, N. V. Pavlova, “Mathematical modeling of the artificial freezing of soils”, Vychisl. Tekhnol., 19:4 (2014), 19–31 (In Russian)
[7] N. V. Pavlova, P. N. Vabishchevich, Vasilyeva M. V., “Mathematical modeling of thermal stabilization of vertical wells on high performance computing systems”, Large-Scale Scientific Computing, LSSC 2013, Lecture Notes in Computer Science, 8353, eds. Lirkov I., Margenov S., Wasniewski J., Springer, Berlin–Heidelberg, 2013, 636–643 | DOI | MR
[8] Y. Belhamadia, A. S. Kane, A. Fortin, “A mixed finite element formulation for solving phase change problems with convection”, Proc. 20th Annu. Conf. of the CFD Society of Canada, 2012 http://www.sinmec.ufsc.br/d̃ihlmann/MALISKA/proceedings_cfd_society_of_canada_conference_may_2012/papers/Belhamadia_Kane_Fortin.pdf/ | MR | Zbl
[9] P. N. Vabishchevich, Fictitious Domain Method in Problems of Mathematical Physics, Izd. Mosk. Univ., M., 1991, 156 pp. (In Russian)
[10] O. Iliev, Z. Lakdawala, V. Starikovicius, “On a numerical subgrid upscaling algorithm for Stokes–Brinkman equations”, Comput. Math. Appl, 65:3 (2013), 435–448 | DOI | MR | Zbl
[11] O. P. Iliev, R. D. Lazarov, J. Willems, “Discontinuous Galerkin subgrid finite element method for heterogeneous Brinkman's equations”, Large-Scale Scientific Computing, LSSC 2009, Lecture Notes in Computer Science, 5910, eds. Lirkov I., Margenov S., Wasniewski J., Springer, Berlin–Heidelberg, 2009, 14–25 | DOI | MR
[12] S. Stepanov, M. Vasilyeva, V. I. Vasil'ev, “Generalized multiscale discontinuous Galerkin method for solving the heat problem with phase change”, J. Comput. Appl. Math., 340 (2018), 645–652 | DOI | MR | Zbl
[13] E. T. Chung, Y. Efendiev, M. Vasilyeva, Y. Wang, “A multiscale discontinuous Galerkin method in perforated domains”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 42:2 (2016), 212–229 | MR | Zbl
[14] A. Logg, K. A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin–Heidelberg, 2012, xiii+731 pp. | DOI | MR | Zbl
[15] C. Geuzaine, J. F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities”, Int. J. Numer. Methods Eng., 79:11 (2009), 1309–1331 | DOI | MR | Zbl