A version of the penalty method with approximation of the epigraphs of auxiliary functions
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 263-273
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              A method for solving the convex programming problem, which is ideologically close to the known methods of external penalties, was proposed. The method uses auxiliary functions that are built on the general form of the penalty functions. In order to find approximations, the epigraphs of these auxiliary functions, as well as the original problem's domain of constraints, were immersed in certain polyhedral sets. In this regard, the problems of finding the iterative points are the linear programming problems, in which the constraints are the sets that approximate the epigraphs and a polyhedron containing an admissible set. The approximating sets were constructed using the traditional cutting of iterative points by planes. The peculiarity of the method is that it enables a periodic update of the approximating sets by discarding the cutting planes. The convergence of the proposed method was proved. Its implementation was discussed.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
conditional minimization, iterative point, penalty function, epigraph, approximating set, cutting hyperplane.
Mots-clés : convergence
                    
                  
                
                
                Mots-clés : convergence
@article{UZKU_2019_161_2_a6,
     author = {I. Ya. Zabotin and K. E. Kazaeva},
     title = {A version of the penalty method with approximation of the epigraphs of auxiliary functions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {263--273},
     publisher = {mathdoc},
     volume = {161},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/}
}
                      
                      
                    TY - JOUR AU - I. Ya. Zabotin AU - K. E. Kazaeva TI - A version of the penalty method with approximation of the epigraphs of auxiliary functions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 263 EP - 273 VL - 161 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/ LA - ru ID - UZKU_2019_161_2_a6 ER -
%0 Journal Article %A I. Ya. Zabotin %A K. E. Kazaeva %T A version of the penalty method with approximation of the epigraphs of auxiliary functions %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 263-273 %V 161 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/ %G ru %F UZKU_2019_161_2_a6
I. Ya. Zabotin; K. E. Kazaeva. A version of the penalty method with approximation of the epigraphs of auxiliary functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 263-273. http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/
