A version of the penalty method with approximation of the epigraphs of auxiliary functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 263-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method for solving the convex programming problem, which is ideologically close to the known methods of external penalties, was proposed. The method uses auxiliary functions that are built on the general form of the penalty functions. In order to find approximations, the epigraphs of these auxiliary functions, as well as the original problem's domain of constraints, were immersed in certain polyhedral sets. In this regard, the problems of finding the iterative points are the linear programming problems, in which the constraints are the sets that approximate the epigraphs and a polyhedron containing an admissible set. The approximating sets were constructed using the traditional cutting of iterative points by planes. The peculiarity of the method is that it enables a periodic update of the approximating sets by discarding the cutting planes. The convergence of the proposed method was proved. Its implementation was discussed.
Keywords: conditional minimization, iterative point, penalty function, epigraph, approximating set, cutting hyperplane.
Mots-clés : convergence
@article{UZKU_2019_161_2_a6,
     author = {I. Ya. Zabotin and K. E. Kazaeva},
     title = {A version of the penalty method with approximation of the epigraphs of auxiliary functions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {263--273},
     year = {2019},
     volume = {161},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/}
}
TY  - JOUR
AU  - I. Ya. Zabotin
AU  - K. E. Kazaeva
TI  - A version of the penalty method with approximation of the epigraphs of auxiliary functions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 263
EP  - 273
VL  - 161
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/
LA  - ru
ID  - UZKU_2019_161_2_a6
ER  - 
%0 Journal Article
%A I. Ya. Zabotin
%A K. E. Kazaeva
%T A version of the penalty method with approximation of the epigraphs of auxiliary functions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 263-273
%V 161
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/
%G ru
%F UZKU_2019_161_2_a6
I. Ya. Zabotin; K. E. Kazaeva. A version of the penalty method with approximation of the epigraphs of auxiliary functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 263-273. http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/

[1] Vasil'ev F.P., Optimization Methods, v. 1, MTsNMO, M., 2011, 620 pp. (in Russian)

[2] Konnov I. V., Nonlinear Optimization and Variational Inequalities, Kazan. Univ., Kazan, 2013, 508 pp. (in Russian)

[3] Polyak B. T., Introduction to Optimization, Nauka, M., 1983, 384 pp. (In Russian)

[4] Bulatov V. P., Embedding Methods in Optimization Problems, Nauka, Novosibirsk, 1977, 161 pp. (in Russian)

[5] Bulatov V. P., Khamisov O. V., “Cutting methods in $E^{n+1}$ for global optimization of a class of functions”, Comput. Math. Math. Phys., 47:11 (2007), 1756–1767 | DOI | MR

[6] Zabotin I.Ya., Yarullin R. S., “A cutting-plane method based on epigraph approximation with discarding the cutting planes”, Autom. Remote Control, 76:11 (2015), 1966–1975 | DOI | MR | Zbl

[7] Zabotin I., Shulgina O., Yarullin R., “A minimization algorithm with approximation of an epigraph of the objective function and a constaint set”, Discrete Optimization and Operations Research, DOOR 2016, CEUR Workshop Proc., 1623, 2016, 321–324 | MR

[8] Nurminski E. A., “A separating plane algorithm with limited memory for convex nonsmooth optimization”, Vychisl. Metody Programm., 7:1 (2006), 133–137 (In Russian)

[9] Zabotin I., Kazaeva K., “Cutting-plane method with embedding of epigraphs of auxiliary functions”, Constructive Nonsmooth Analysis and Related Topics, dedicated to the memory of V.F. Demyanov, IEEE, 2017, 1–4 | DOI

[10] Zabotin I.Ya., Yarullin R. S., “A cutting-plane method without inclusions of approximating sets for conditional minimization”, Lobachevskii J. Math., 36:2 (2015), 132–138 | DOI | MR | Zbl

[11] Zabotin I. Y., Shul'gina O. N., Yarullin R. S., “A minimization method with approximation of feasible set and epigraph of objective function”, Russ. Math., 60:11 (2016), 78–81 | DOI | Zbl

[12] Zabotin I. Ya., Shulgina O. N., Yarullin R. S., “A cutting method and construction of mixed minimization algorithms on its basis”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 4, 2014, 14–24 (In Russian) | Zbl

[13] Zabotin I. Ya., “Some embedding-cutting algorithms for mathematical programming problems”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 4:2 (2011), 91–101 (In Russian)