Mots-clés : convergence
@article{UZKU_2019_161_2_a6,
author = {I. Ya. Zabotin and K. E. Kazaeva},
title = {A version of the penalty method with approximation of the epigraphs of auxiliary functions},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {263--273},
year = {2019},
volume = {161},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/}
}
TY - JOUR AU - I. Ya. Zabotin AU - K. E. Kazaeva TI - A version of the penalty method with approximation of the epigraphs of auxiliary functions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 263 EP - 273 VL - 161 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/ LA - ru ID - UZKU_2019_161_2_a6 ER -
%0 Journal Article %A I. Ya. Zabotin %A K. E. Kazaeva %T A version of the penalty method with approximation of the epigraphs of auxiliary functions %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 263-273 %V 161 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/ %G ru %F UZKU_2019_161_2_a6
I. Ya. Zabotin; K. E. Kazaeva. A version of the penalty method with approximation of the epigraphs of auxiliary functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 263-273. http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a6/
[1] Vasil'ev F.P., Optimization Methods, v. 1, MTsNMO, M., 2011, 620 pp. (in Russian)
[2] Konnov I. V., Nonlinear Optimization and Variational Inequalities, Kazan. Univ., Kazan, 2013, 508 pp. (in Russian)
[3] Polyak B. T., Introduction to Optimization, Nauka, M., 1983, 384 pp. (In Russian)
[4] Bulatov V. P., Embedding Methods in Optimization Problems, Nauka, Novosibirsk, 1977, 161 pp. (in Russian)
[5] Bulatov V. P., Khamisov O. V., “Cutting methods in $E^{n+1}$ for global optimization of a class of functions”, Comput. Math. Math. Phys., 47:11 (2007), 1756–1767 | DOI | MR
[6] Zabotin I.Ya., Yarullin R. S., “A cutting-plane method based on epigraph approximation with discarding the cutting planes”, Autom. Remote Control, 76:11 (2015), 1966–1975 | DOI | MR | Zbl
[7] Zabotin I., Shulgina O., Yarullin R., “A minimization algorithm with approximation of an epigraph of the objective function and a constaint set”, Discrete Optimization and Operations Research, DOOR 2016, CEUR Workshop Proc., 1623, 2016, 321–324 | MR
[8] Nurminski E. A., “A separating plane algorithm with limited memory for convex nonsmooth optimization”, Vychisl. Metody Programm., 7:1 (2006), 133–137 (In Russian)
[9] Zabotin I., Kazaeva K., “Cutting-plane method with embedding of epigraphs of auxiliary functions”, Constructive Nonsmooth Analysis and Related Topics, dedicated to the memory of V.F. Demyanov, IEEE, 2017, 1–4 | DOI
[10] Zabotin I.Ya., Yarullin R. S., “A cutting-plane method without inclusions of approximating sets for conditional minimization”, Lobachevskii J. Math., 36:2 (2015), 132–138 | DOI | MR | Zbl
[11] Zabotin I. Y., Shul'gina O. N., Yarullin R. S., “A minimization method with approximation of feasible set and epigraph of objective function”, Russ. Math., 60:11 (2016), 78–81 | DOI | Zbl
[12] Zabotin I. Ya., Shulgina O. N., Yarullin R. S., “A cutting method and construction of mixed minimization algorithms on its basis”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 4, 2014, 14–24 (In Russian) | Zbl
[13] Zabotin I. Ya., “Some embedding-cutting algorithms for mathematical programming problems”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 4:2 (2011), 91–101 (In Russian)