@article{UZKU_2019_161_2_a4,
author = {A. A. Semenov and S. S. Leonov},
title = {The continuous method of solution continuation with respect to the best parameter in the calculation of shell structures},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {230--249},
year = {2019},
volume = {161},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a4/}
}
TY - JOUR AU - A. A. Semenov AU - S. S. Leonov TI - The continuous method of solution continuation with respect to the best parameter in the calculation of shell structures JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 230 EP - 249 VL - 161 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a4/ LA - ru ID - UZKU_2019_161_2_a4 ER -
%0 Journal Article %A A. A. Semenov %A S. S. Leonov %T The continuous method of solution continuation with respect to the best parameter in the calculation of shell structures %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 230-249 %V 161 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a4/ %G ru %F UZKU_2019_161_2_a4
A. A. Semenov; S. S. Leonov. The continuous method of solution continuation with respect to the best parameter in the calculation of shell structures. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 230-249. http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a4/
[1] Lahaye M. E., “Une metode de resolution d'une categorie d'equations transcendentes”, Compter Rendus hebdomataires des seances de L'Academie des sciences, 198:21 (1934), 1840–1842 (In French)
[2] Lahaye M. E., “Solution of system of transcendental equations”, Acad. R. Belg. Bull. Cl. Sci., 5 (1948), 805–822
[3] Davidenko D. F., “On a new numerical method for solving systems of nonlinear equations”, Dokl. Akad. Nauk SSSR, 88:4 (1953), 601–602 (in Russian) | MR | Zbl
[4] Davidenko D. F., “Approximate solution of nonlinear equation systems”, Ukr. Mat. Zh., 5:2 (1953), 196–206 (In Russian) | MR | Zbl
[5] Vorovich I. I., Zipalova V. F., “On the solution of nonlinear boundary value problems of the theory of elasticity by a method of transformation to an initial value Cauchy problem”, J. Appl. Math. Mech., 29:5 (1965), 1055–1063 | DOI | MR | Zbl
[6] Riks E., “The application of Newton's method to the problem of elastic stability”, J. Appl. Mech., 39:4 (1972), 1060–1065 | DOI | Zbl
[7] Grigolyuk E. I., Shalashilin V. I., Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics, Kluwer Acad. Publ., Dordrecht, 1991, 262 pp. | MR
[8] Allgower E. L., Georg K., Introduction to Numerical Continuation Methods, Springer, Berlin–Heidelberg, 1990, 388 pp. | MR
[9] Shalashilin V. I., Kuznetsov E. B., Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Kluwer Acad. Publ., Dordrecht–Boston–London, 2003, 228 pp. | MR | Zbl
[10] Kuznetsov E. B., Some Applications of the Solution Continuation Method with Respect to the Best Argument, Izd. MAI, M., 2013, 160 pp. (in Russian)
[11] Kuznetsov E. B., Parametrization of Boundary Value Problems and Passing through Bifurcation Points, Izd. MAI, M., 2016, 160 pp. (in Russian)
[12] Kuznetsov E. B., Leonov S. S., “Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points”, Comput. Math. Math. Phys., 57:6 (2017), 931–952 | DOI | DOI | MR | Zbl
[13] Kuznetsov E. B., Leonov S. S., “Examples of parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points”, Comput. Math. Math. Phys., 58:6 (2018), 881–897 | DOI | DOI | MR | Zbl
[14] Kalitkin N. N., Poshivaylo I. P., “Solving the Cauchy problem with guaranteed accuracy for stiff systems by the arc length method”, Math. Models Comput. Simul., 7:1 (2015), 24–35 | DOI | MR | Zbl
[15] Belov A. A., Kalitkin N. N., “Numerical methods of solving Cauchy problems with contrast structures”, Model. Anal. Inform. Sist., 23:5 (2016), 529–538 (in Russian) | MR
[16] Belov A. A., Kalitkin N. N., “Features of calculating contrast structures in the Cauchy problem”, Math. Models Comput. Simul., 9:3 (2017), 281–291 | DOI | MR | Zbl
[17] Moskalenko L. P., “Methods for investigating the stability of shallow ribbed shells based on the continuation of solution method by the best parameter”, Vestn. Grazhdanskikh Inzh., 2011, no. 4, 161–164 (in Russian)
[18] Semenov A. A., “Strength and stability of geometrically nonlinear orthotropic shell structures”, Thin-Walled Struct, 106 (2016), 428–436 | DOI
[19] May S., Vignollet J., de Borst R., “A new arc-length control method based on the rates of the internal and the dissipated energy”, Eng. Comput, 33:1 (2016), 100–115 | DOI | MR
[20] Wang X., Ma T.-B., Ren H.-L., Ning J.-G., “A local pseudo arc-length method for hyperbolic conservation laws”, Acta Mech. Sin., 30:6 (2015), 956–965 | DOI | MR
[21] Grigolyuk E. I., Lopanitsyn E. A., Finite Deflections, Stability, and Supercritical Behavior of Thin Shallow Shells, Izd. MAMI, M., 2004, 162 pp. (in Russian)
[22] Gavryushin S. S., Baryshnikova O. O., Boriskin O. F., Numerical Analysis of Machine and Equipment Components, Izd. MGTU im. N.E. Baumana, M., 2014, 479 pp. (in Russian)
[23] Petrov V. V., The Method of Sequential Loading in the Nonlinear Theory of Plates and Shells, Izd. Sarat. Univ., Saratov, 1975, 119 pp. (in Russian)
[24] Karpov V. V., Petrov V. V., “Solutions refinement in the theory of flexible plates and shells using step methods”, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1975, no. 5, 189–191 (In Russian)
[25] Valishvili N. V., Methods for Calculating the Rotation Shells on a Digital Computer, Mashinostroenie, M., 1976, 278 pp. (in Russian)
[26] Trushin S. I., Mikhailov A. V., “Stability and bifurcations of flexible flat mesh shells”, Vestn. NITS Stroitelstvo, 2010, no. 2, 150–158 (in Russian)
[27] Luo K., Liu C., Tian Q., Hu H., “Nonlinear static and dynamic analysis of hyper-elastic thin shells via the absolute nodal coordinate formulation”, Nonlinear Dyn, 85:2 (2016), 949–971 | DOI | MR | Zbl
[28] Kundu C. K., Han J.-H., “Vibration and post-buckling behavior of laminated composite doubly curved shell structures”, Adv. Compos. Mater., 18:1 (2009), 21–42 | DOI
[29] Alijani F., Amabili M., Karagiozis K., Bakhtiari-Nejad F., “Nonlinear vibrations of functionally graded doubly curved shallow shells”, J. Sound Vib., 330:7 (2011), 1432–1454 | DOI
[30] Mouhat O., Khamlichi A., “Effect of loading pulse duration on dynamic buckling of stiffened panels”, MATEC Web Conf., 16 (2014), 07006, 5 pp. | DOI
[31] Zhao X., Liew K. M., “Geometrically nonlinear analysis of functionally graded shells”, Int. J. Mech. Sci., 51:2 (2009), 131–144 | DOI | Zbl
[32] Khan A. H., Patel B. P., “On the nonlinear dynamics of bimodular laminated composite conical panels”, Nonlinear Dyn., 79:2 (2015), 1495–1509 | DOI
[33] Badriev I. B., Makarov M. V., Paimushin V. N., “Contact statement of mechanical problems of reinforced on contour sandwich plates with transversal-soft core”, Russ. Math., 61:1 (2017), 69–75 | DOI | MR | Zbl
[34] Badriev I. B., Makarov M. V., Paimushin V. N., Kholmogorov S. A., “The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:4 (2017), 395–428 (in Russian) | MR
[35] Kudryavtsev L. D., A Course of Mathematical Analysis, v. 2, Series. Differential and integral calculus of functions of several variables, Drofa, M., 2003, 720 pp. (in Russian)
[36] Karpov V. V., Semenov A. A., “Dimensionless parameters in the theory of reinforced shells”, Vestn. Perm. Nats. Issled. Politekh. Univ. Mekh., 2015, no. 3, 74–94 (in Russian) | DOI
[37] Karpov V. V., Ignatiev O. V., Salnikov A. Yu., Nonlinear Mathematical Models of Variable Thickness Shells Deformation and Algorithms for Their Study, ACB, M.; SPbGASU, St. Petersburg, 2002, 420 pp. (In Russian)
[38] Wang X., “Nonlinear stability analysis of thin doubly curved orthotropic shallow shells by the differential quadrature method”, Comput. Methods Appl. Mech. Eng., 196 (2007), 2242–2251 | DOI | Zbl
[39] van Campen D. H., Bouwman V. P., Zhang G. Q., Zhang J., ter Weeme B. J.W., “Semianalytical stability analysis of doubly-curved orthotropic shallow panels – considering the effects of boundary conditions”, Int. J. Non-Linear Mech, 37 (2002), 659–667 | DOI | Zbl