A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 191-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A mathematical model of material microstructure formation in the process of selective laser sintering was proposed. The model is based on the stress and strain analysis in a representative volume of a powder that contains some particles. The strains and stresses are caused by contact interaction of particles due to surface tension. It was assumed that the particles are made of elastoplastic material. The material properties were described by the associative Drucker–Prager model with hardening. The nonlinear effects caused by large strains were taken into account. The model permits one to determine the shape of particles in the deformed state and the shape of pores. The numerical results were presented for the problem of contact interaction between two particles that assume the spherical shape before deformation. The displacements of centers of powder particles were specified as input. The finite-element method was used for computations. The flow rule was integrated using the implicit Euler backward method. The mortar method was used to solve the problem with account of contact interaction. The distribution of contact stresses over the surfaces of powder particles and the distribution of the von Mises plastic strains in the section of these particles were shown as a result of the analysis. The dependence of contact zone radius on the contact displacements of the particles' centers was investigated. It was analyzed how the radius of contact zone depends on the material parameter characterizing the pressure dependence of plastic flow.
Keywords: selective laser sintering, large strains, plasticity, finite-element method.
Mots-clés : microstructure formation
@article{UZKU_2019_161_2_a2,
     author = {V. A. Levin and K. M. Zingerman and K. Yu. Krapivin and O. A. Ryabova and A. V. Kukushkin},
     title = {A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {191--204},
     year = {2019},
     volume = {161},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a2/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - K. M. Zingerman
AU  - K. Yu. Krapivin
AU  - O. A. Ryabova
AU  - A. V. Kukushkin
TI  - A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 191
EP  - 204
VL  - 161
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a2/
LA  - ru
ID  - UZKU_2019_161_2_a2
ER  - 
%0 Journal Article
%A V. A. Levin
%A K. M. Zingerman
%A K. Yu. Krapivin
%A O. A. Ryabova
%A A. V. Kukushkin
%T A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 191-204
%V 161
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a2/
%G ru
%F UZKU_2019_161_2_a2
V. A. Levin; K. M. Zingerman; K. Yu. Krapivin; O. A. Ryabova; A. V. Kukushkin. A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 191-204. http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a2/

[1] Shishkovskii I. V., Laser Synthesis of Functionally Graded Mesostructures and Volumetric Articles, Fizmatlit, M., 2009, 424 pp.

[2] Zlenko M. A., Nagaitsev M. V., Dovbysh V. M., Additive Technologies in Mechanical Engineering, Manual for Engineers, GNTs RF FGUP “NAMI”, M., 2015, 220 pp.

[3] Frenkel Ya. I., “Viscous flow in crystal bodies”, Zh. Eksp. Teor. Fiz., 16:1 (1946), 29–35 (in Russian)

[4] Geguzin Ya.E., Why and How the Void Vanishes, Nauka, M., 1983, 192 pp. (in Russian)

[5] Geguzin Ya.E., The Physics of Sintering, Nauka, M., 1984, 312 pp. (in Russian)

[6] Levin V. A., Lokhin V. V., Zingerman K. M., “A method for estimating the effective characteristics of porous bodies subjected to finite deformations”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 32:4 (1997), 45–50 (in Russian)

[7] Levin V. A., Lokhin V. V., Zingerman K. M., “Effective elastic properties of porous materials with randomly dispersed pores. Finite deformation”, J. Appl. Mech., 67:4 (2000), 667–670 | DOI | Zbl

[8] Levin V. A., Zingerman K. M., Vershinin A. V., Yakovlev M., “Numerical analysis of effective mechanical properties of rubber-cord composites under finite strains”, Compos. Struct., 131 (2015), 25–36 | DOI

[9] Levin V., Vdovichenko I., Vershinin A., Yakovlev M., Zingerman K., “Numerical estimation of effective mechanical properties for reinforced plexiglas in the two-dimensional case”, Modell. Simul. Mater. Sci. Eng., 2016 (2016), 9010576, 10 pp. | DOI

[10] Vdovichenko I. I., Yakovlev M. Ya., Vershinin A. V., Levin V. A., “Calculation of the effective thermal properties of the composites based on the finite element solutions of the boundary value problems”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 012094, 7 pp. | DOI

[11] Rabotnov Yu.N., Mechanics of a Deformable Solid, Nauka, M., 1988, 712 pp. (In Russian)

[12] German R. M., Sintering from empirical observations to scientific principles, Elsevier, 2014, 536 pp.

[13] Levin V. A., “Theory of repeated superposition of large deformations: Elastic and viscoelastic bodies”, Int. J. Solids Struct., 35:20 (1998), 2585–2600 | DOI | Zbl

[14] Levin V. A., Nonlinear Computational Strength Mechanics, v. 1, Models and methods. Origination and growth of defects, Fizmatlit, M., 2014, 452 pp. (in Russian)

[15] Lurie A. I., Nonlinear Theory of Elasticity, Nauka, M., 1980, 512 pp. (in Russian)

[16] Drucker D. C., Prager W., “Soil mechanics and plastic analysis for limit design”, Q. Appl. Math., 10:2 (1952), 157–165 | DOI | MR | Zbl

[17] Simo J. C., Hughes T. J. R., Computational inelasticity, Springer, N. Y., 1998, 392 pp. | MR | Zbl

[18] Hofstetter G., Taylor R. L., “Non-associative Drucker–Prager plasticity at finite strains”, Commun. Appl. Numer. Methods, 6:8 (1990), 583–589 | DOI | Zbl

[19] Lee E. H., Liu D. T., “Finite-strain elastic-plastic theory particularly for plane wave analysis”, J. Appl. Phys., 38 (1967), 19–27 | DOI

[20] Zienkiewicz O. C., Taylor R. L., Fox D. D., The Finite Element Method for Solid and Structural Mechanics, Elsevier, 2014, 672 pp. | DOI | MR | Zbl

[21] Wriggers P., Computational contact mechanics, Springer, N. Y., 2006, 519 pp. | Zbl

[22] Puso M. A., Laursen T. A., “A mortar segment-to-segment frictional contact method for large deformations”, Comput. Methods Appl. Mech. Eng., 193:45–47 (2017), 4891–4913 | DOI | MR

[23] Feng B., Levitas V. I., “Large elastoplastic deformation of a sample under compression and torsion in a rotational diamond anvil cell under megabar pressures”, Int. J. Plast., 92 (2017), 79–95 | DOI

[24] Feng B., Levitas V. I., Hemley R. J., “Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells”, Int. J. Plast., 84 (2015), 33–57 | DOI

[25] Idesman A. V., Levitas V. I., “Finite element procedure for solving contact thermoelastoplastic problems at large strains, normal and high pressures”, Comput. Methods Appl. Mech. Eng., 126:1–2 (1995), 39–66 | DOI | MR | Zbl

[26] Badriev I. B., Makarov M. V., Paimushin V. N., “Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core”, Uchenye Zapiski Kazanskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 158, no. 4, 2016, 453–468 (in Russian)

[27] Paimushin V. N., Badriev I. B., Makarov M. V., Kholmogorov S. A., “Transformable calculation schemes in geometrically nonlinear problems of mechanics of sandwich plates with the contour reinforcing beams”, J. Phys.: Conf. Ser., 1158, no. 3 (2019), 032043, 7 pp. | DOI | MR

[28] Abdrakhmanova A. I., Sultanov L. U., “The algorithm of investigation of deformations of solids with contact interaction”, J. Phys.: Conf. Ser., 1158:2 (2019), 022001, 7 pp. | DOI

[29] Morozov E. M., Levin V. A., Vershinin A. V., Strength Analysis. Fidesys in the Hands of an Engineer, URSS, M., 2015, 408 pp. (in Russian)

[30] Kukushkin A. V., Konovalov D. A., Vershinin A. V., Levin V. A., “Numerical simulation in CAE Fidesys of bonded contact problems on non-conformal meshes”, J. Phys.: Conf. Ser., 1158:3 (2019), 032022, 8 pp. | DOI

[31] Karpenko V. S., Vershinin A. V., Levin V. A., Zingerman K. M., “Some results of mesh convergence estimation for the spectral element method of different orders in FIDESYS industrial package”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 012049, 6 pp. | DOI

[32] Landau L. D., Lifshitz E. M., Theoretical Physics, v. 6, Hydrodynamics, Nauka, M., 1986, 736 pp. (in Russian) | MR

[33] Brown S. B., Kim K. H., Anand L., “An internal variable constitutive model for hot working of metal”, Int. J. Plast., 5:2 (1989), 95–130 | DOI | Zbl

[34] Chen G., Zhang Z.-S., Mei Yu.-H., Li X., Yu D.-J., Wang L., Chen X., “Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint”, Mech. Mater., 72 (2014), 61–71 | DOI

[35] Burenin A. A., Kovtanyuk L. V., Panchenko G. L., “Deformation and heating of an elastoviscoplastic cylindrical Layer moving owing to a varying pressure drop”, Mech. Solids, 53:1 (2018), 1–11 | DOI | MR

[36] Burenin A. A., Bykovtsev G. I., Kovtanyuk L. V., “A simple model of finite strain in an elastoplastic medium”, Dokl. Phys., 41:3 (1996), 127–129 | Zbl

[37] Bazhin A. A., Burenin A. A., Murashkin E. V., “Simulation of the process of the accumulation of large irreversible deformations under plastic flow and creep conditions”, J. Appl. Math. Mech., 80:2 (2016), 182–189 | DOI | MR | Zbl

[38] Choi J.-P., Shin G.-H., Lee H.-S., Yang D.-Y., Yang S., Lee C.-W., Brochu M., Yu J.-H., “Evaluation of powder layer density for the selective laser melting (SLM) process”, Mater. Trans., 58:2 (2017), 294–297 | DOI