Mots-clés : microstructure formation
@article{UZKU_2019_161_2_a2,
author = {V. A. Levin and K. M. Zingerman and K. Yu. Krapivin and O. A. Ryabova and A. V. Kukushkin},
title = {A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {191--204},
year = {2019},
volume = {161},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a2/}
}
TY - JOUR AU - V. A. Levin AU - K. M. Zingerman AU - K. Yu. Krapivin AU - O. A. Ryabova AU - A. V. Kukushkin TI - A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 191 EP - 204 VL - 161 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a2/ LA - ru ID - UZKU_2019_161_2_a2 ER -
%0 Journal Article %A V. A. Levin %A K. M. Zingerman %A K. Yu. Krapivin %A O. A. Ryabova %A A. V. Kukushkin %T A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 191-204 %V 161 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a2/ %G ru %F UZKU_2019_161_2_a2
V. A. Levin; K. M. Zingerman; K. Yu. Krapivin; O. A. Ryabova; A. V. Kukushkin. A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 191-204. http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a2/
[1] Shishkovskii I. V., Laser Synthesis of Functionally Graded Mesostructures and Volumetric Articles, Fizmatlit, M., 2009, 424 pp.
[2] Zlenko M. A., Nagaitsev M. V., Dovbysh V. M., Additive Technologies in Mechanical Engineering, Manual for Engineers, GNTs RF FGUP “NAMI”, M., 2015, 220 pp.
[3] Frenkel Ya. I., “Viscous flow in crystal bodies”, Zh. Eksp. Teor. Fiz., 16:1 (1946), 29–35 (in Russian)
[4] Geguzin Ya.E., Why and How the Void Vanishes, Nauka, M., 1983, 192 pp. (in Russian)
[5] Geguzin Ya.E., The Physics of Sintering, Nauka, M., 1984, 312 pp. (in Russian)
[6] Levin V. A., Lokhin V. V., Zingerman K. M., “A method for estimating the effective characteristics of porous bodies subjected to finite deformations”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 32:4 (1997), 45–50 (in Russian)
[7] Levin V. A., Lokhin V. V., Zingerman K. M., “Effective elastic properties of porous materials with randomly dispersed pores. Finite deformation”, J. Appl. Mech., 67:4 (2000), 667–670 | DOI | Zbl
[8] Levin V. A., Zingerman K. M., Vershinin A. V., Yakovlev M., “Numerical analysis of effective mechanical properties of rubber-cord composites under finite strains”, Compos. Struct., 131 (2015), 25–36 | DOI
[9] Levin V., Vdovichenko I., Vershinin A., Yakovlev M., Zingerman K., “Numerical estimation of effective mechanical properties for reinforced plexiglas in the two-dimensional case”, Modell. Simul. Mater. Sci. Eng., 2016 (2016), 9010576, 10 pp. | DOI
[10] Vdovichenko I. I., Yakovlev M. Ya., Vershinin A. V., Levin V. A., “Calculation of the effective thermal properties of the composites based on the finite element solutions of the boundary value problems”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 012094, 7 pp. | DOI
[11] Rabotnov Yu.N., Mechanics of a Deformable Solid, Nauka, M., 1988, 712 pp. (In Russian)
[12] German R. M., Sintering from empirical observations to scientific principles, Elsevier, 2014, 536 pp.
[13] Levin V. A., “Theory of repeated superposition of large deformations: Elastic and viscoelastic bodies”, Int. J. Solids Struct., 35:20 (1998), 2585–2600 | DOI | Zbl
[14] Levin V. A., Nonlinear Computational Strength Mechanics, v. 1, Models and methods. Origination and growth of defects, Fizmatlit, M., 2014, 452 pp. (in Russian)
[15] Lurie A. I., Nonlinear Theory of Elasticity, Nauka, M., 1980, 512 pp. (in Russian)
[16] Drucker D. C., Prager W., “Soil mechanics and plastic analysis for limit design”, Q. Appl. Math., 10:2 (1952), 157–165 | DOI | MR | Zbl
[17] Simo J. C., Hughes T. J. R., Computational inelasticity, Springer, N. Y., 1998, 392 pp. | MR | Zbl
[18] Hofstetter G., Taylor R. L., “Non-associative Drucker–Prager plasticity at finite strains”, Commun. Appl. Numer. Methods, 6:8 (1990), 583–589 | DOI | Zbl
[19] Lee E. H., Liu D. T., “Finite-strain elastic-plastic theory particularly for plane wave analysis”, J. Appl. Phys., 38 (1967), 19–27 | DOI
[20] Zienkiewicz O. C., Taylor R. L., Fox D. D., The Finite Element Method for Solid and Structural Mechanics, Elsevier, 2014, 672 pp. | DOI | MR | Zbl
[21] Wriggers P., Computational contact mechanics, Springer, N. Y., 2006, 519 pp. | Zbl
[22] Puso M. A., Laursen T. A., “A mortar segment-to-segment frictional contact method for large deformations”, Comput. Methods Appl. Mech. Eng., 193:45–47 (2017), 4891–4913 | DOI | MR
[23] Feng B., Levitas V. I., “Large elastoplastic deformation of a sample under compression and torsion in a rotational diamond anvil cell under megabar pressures”, Int. J. Plast., 92 (2017), 79–95 | DOI
[24] Feng B., Levitas V. I., Hemley R. J., “Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells”, Int. J. Plast., 84 (2015), 33–57 | DOI
[25] Idesman A. V., Levitas V. I., “Finite element procedure for solving contact thermoelastoplastic problems at large strains, normal and high pressures”, Comput. Methods Appl. Mech. Eng., 126:1–2 (1995), 39–66 | DOI | MR | Zbl
[26] Badriev I. B., Makarov M. V., Paimushin V. N., “Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core”, Uchenye Zapiski Kazanskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 158, no. 4, 2016, 453–468 (in Russian)
[27] Paimushin V. N., Badriev I. B., Makarov M. V., Kholmogorov S. A., “Transformable calculation schemes in geometrically nonlinear problems of mechanics of sandwich plates with the contour reinforcing beams”, J. Phys.: Conf. Ser., 1158, no. 3 (2019), 032043, 7 pp. | DOI | MR
[28] Abdrakhmanova A. I., Sultanov L. U., “The algorithm of investigation of deformations of solids with contact interaction”, J. Phys.: Conf. Ser., 1158:2 (2019), 022001, 7 pp. | DOI
[29] Morozov E. M., Levin V. A., Vershinin A. V., Strength Analysis. Fidesys in the Hands of an Engineer, URSS, M., 2015, 408 pp. (in Russian)
[30] Kukushkin A. V., Konovalov D. A., Vershinin A. V., Levin V. A., “Numerical simulation in CAE Fidesys of bonded contact problems on non-conformal meshes”, J. Phys.: Conf. Ser., 1158:3 (2019), 032022, 8 pp. | DOI
[31] Karpenko V. S., Vershinin A. V., Levin V. A., Zingerman K. M., “Some results of mesh convergence estimation for the spectral element method of different orders in FIDESYS industrial package”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 012049, 6 pp. | DOI
[32] Landau L. D., Lifshitz E. M., Theoretical Physics, v. 6, Hydrodynamics, Nauka, M., 1986, 736 pp. (in Russian) | MR
[33] Brown S. B., Kim K. H., Anand L., “An internal variable constitutive model for hot working of metal”, Int. J. Plast., 5:2 (1989), 95–130 | DOI | Zbl
[34] Chen G., Zhang Z.-S., Mei Yu.-H., Li X., Yu D.-J., Wang L., Chen X., “Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint”, Mech. Mater., 72 (2014), 61–71 | DOI
[35] Burenin A. A., Kovtanyuk L. V., Panchenko G. L., “Deformation and heating of an elastoviscoplastic cylindrical Layer moving owing to a varying pressure drop”, Mech. Solids, 53:1 (2018), 1–11 | DOI | MR
[36] Burenin A. A., Bykovtsev G. I., Kovtanyuk L. V., “A simple model of finite strain in an elastoplastic medium”, Dokl. Phys., 41:3 (1996), 127–129 | Zbl
[37] Bazhin A. A., Burenin A. A., Murashkin E. V., “Simulation of the process of the accumulation of large irreversible deformations under plastic flow and creep conditions”, J. Appl. Math. Mech., 80:2 (2016), 182–189 | DOI | MR | Zbl
[38] Choi J.-P., Shin G.-H., Lee H.-S., Yang D.-Y., Yang S., Lee C.-W., Brochu M., Yu J.-H., “Evaluation of powder layer density for the selective laser melting (SLM) process”, Mater. Trans., 58:2 (2017), 294–297 | DOI