Neuromathematics as an effective tool for forecasting social development of Russian regions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 315-321
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
In the context of the national economic turbulence, it becomes important to forecast the social development of constituent entities of the Russian Federation. In order to provide highly accurate forecasting, neural network technologies are used in the research (a Bayesian assembly of the dynamic neural network of various configurations is formed). As a result of the forecasting, it is found, that the leading Russian regions should have a lower social development index in 2016–2017 as compared to 2014–2015. A slowdown of social development is also predicted for the leading regions of the Volga Federal District in 2016–2017, but only as compared to 2015. The obtained data show that the social development index in the Republic of Bashkortostan changes a little. Nevertheless, a significant lagging of Bashkortostan behind the leading regions of the Russian Federation and the Volga Federal District in the social sphere is predicted: Bashkortostan is a competitive region in terms of the living standards, but not in the sphere of scientific research and innovations. For this reason, measures encouraging innovative development of Russian regions as exemplified by the Republic of Bashkortostan are introduced and discussed in the paper.
Keywords:
forecasting social development, Russian regions, neural simulation, Bayesian assembly of neural networks.
@article{UZKU_2019_161_2_a10,
author = {R. V. Gubarev and E. I. Dzyuba},
title = {Neuromathematics as an effective tool for forecasting social development of {Russian} regions},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {315--321},
publisher = {mathdoc},
volume = {161},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a10/}
}
TY - JOUR AU - R. V. Gubarev AU - E. I. Dzyuba TI - Neuromathematics as an effective tool for forecasting social development of Russian regions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 315 EP - 321 VL - 161 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a10/ LA - en ID - UZKU_2019_161_2_a10 ER -
%0 Journal Article %A R. V. Gubarev %A E. I. Dzyuba %T Neuromathematics as an effective tool for forecasting social development of Russian regions %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 315-321 %V 161 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a10/ %G en %F UZKU_2019_161_2_a10
R. V. Gubarev; E. I. Dzyuba. Neuromathematics as an effective tool for forecasting social development of Russian regions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 315-321. http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a10/