The numerical solution of the nonlinear boundary value problem with singularity for the system of delay integrodifferential-algebraic equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 181-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The numerical method for solving the nonlinear boundary value problem for a delay system of integrodifferential-algebraic equations was discussed. The occurrence of a delay argument in the system characterizes the behavior of the studied parameters not only at the current, but also at the previous period of time.Of particular interest are the problems characterized by the existence of singular limit points. It is very difficult to solve these problems using the classical methods.A numerical solution of the boundary value problem was constructed by the shooting method. The values of the “shooting” parameter were found using a combination of the method of continuation with respect to the best parameter, the method of continuation with respect to the parameter in the Lahaye form, and the Newton method. At each iteration of the shooting method, the initial problem was solved. The computation of the initial problem influences the finding of the required solution and the continuation of the iterative process of the shooting method. The initial problem was rearranged based on the best parameter – the length of the curve of the solution set, and finite-difference representation of derivatives. The resulting problem was solved by the Newton method. The values of the functions at the deviation point, where the values are not defined by conditions of the problem, were calculated with the help of the Lagrange polynomial with three points. To find the value of the integral components of the problem, the trapezoid method was used.The results of the numerical study confirm the efficiency of the proposed algorithm for solving the studied problem. The obtained numerical solution of the nonlinear boundary value problem with delay has the equation that loses its meaning in singular limit points. Thus, using of the continuation with respect to the best parameter while solving the problem allows to find all possible values of the parameter of the shooting method and to solve the problem.
Keywords: boundary value problem, numerical solution, differential equations with delay, shooting method, method of continuation with respect to best parameter, singular limit points.
@article{UZKU_2019_161_2_a1,
     author = {M. N. Afanaseva and E. B. Kuznetsov},
     title = {The numerical solution of the nonlinear boundary value problem with singularity for the system of delay integrodifferential-algebraic equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {181--190},
     year = {2019},
     volume = {161},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a1/}
}
TY  - JOUR
AU  - M. N. Afanaseva
AU  - E. B. Kuznetsov
TI  - The numerical solution of the nonlinear boundary value problem with singularity for the system of delay integrodifferential-algebraic equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 181
EP  - 190
VL  - 161
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a1/
LA  - ru
ID  - UZKU_2019_161_2_a1
ER  - 
%0 Journal Article
%A M. N. Afanaseva
%A E. B. Kuznetsov
%T The numerical solution of the nonlinear boundary value problem with singularity for the system of delay integrodifferential-algebraic equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 181-190
%V 161
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a1/
%G ru
%F UZKU_2019_161_2_a1
M. N. Afanaseva; E. B. Kuznetsov. The numerical solution of the nonlinear boundary value problem with singularity for the system of delay integrodifferential-algebraic equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 2, pp. 181-190. http://geodesic.mathdoc.fr/item/UZKU_2019_161_2_a1/

[1] Na T.Y., Computational methods in engineering boundary value problems, Acad. Press, N. Y., 1980, 309 pp. | MR

[2] Ivanova E. P., “Continuous dependence of solutions of boundary-value problems for differential-difference equations on shifts of the argument”, CMFD, 59, 2016, 74–96 (in Russian)

[3] Kamenskii G. A., Skubachevskii A. L., Linear Boundary Value Problems for Differential-Difference Equations, Izd. MAI, M., 1992, 190 pp. (in Russian)

[4] Kuznetsov E. B., Mikryukov V. N. Numerical integration of systems of delay differential-algebraic equations, Comput. Math. Math. Phys., 47:1 (2007), 80–92 | DOI | MR | Zbl

[5] Krasnikov S. D., Kuznetsov E. B., “On the parametrization of numerical solutions to boundary value problems for nonlinear differential equations”, Comput. Math. Math. Phys., 45:12 (2005), 2066–2076 | MR | Zbl

[6] Budkina E. M., Kuznetsov E. B., “Modeling the technological process for manufacturing of aircraft structural components based on the best parametrization of the boundary value problem for nonlinear differential-algebraic equations”, Vestn. MAI, 23:1 (2016), 189–196 (in Russian)

[7] Dmitriev S. S., Kuznetsov E. B., “Numerical solution to systems of delay integrodifferential algebraic equations”, Comput. Math. Math. Phys., 48:3 (2008), 406–419 | DOI | MR | Zbl

[8] Shalashilin V. I., Kuznetsov E. B., Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Springer, 2003, viii+228 pp. | DOI | MR

[9] Bakhvalov N. S., Zhidkov N. P., Kobel'kov G. M., Numerical Methods, Nauka, M., 1987, 600 pp. (In Russian)

[10] Samoilenko A. M., Ronto N. I., Numerical and Analytic Methods in Studying the Solutions of Boundary Value Problems, Naukova Dumka, Kiev, 1986, 222 pp. (in Russian) | MR

[11] Davidenko D. F., “On a new method of numerical solution of systems of nonlinear equations”, Dokl. Akad. Nauk SSSR, 88:4 (1953), 601–602 (in Russian) | MR | Zbl

[12] Lahaye M. E., “Une metode de resolution d'une categorie d'equations transcendentes”, Compter Rendus hebdomataires des seances de L'Academie des sciences, 198:21 (1934), 1840–1842 (In French)

[13] Kuznetsov E. B., “Optimal parametrization in numerical construction of curve”, J. Franklin Institute, 344 (2007), 658–671 | DOI | MR | Zbl