Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: Numerical and experimental investigation of forming stresses and strains
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 86-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Based on the qualitative analysis of the geometric pattern of deformation of flat specimens from cross-ply fibrous composites with the $[\pm45^\circ]_{2s}$ lay-up when they are under tension and compression and using the physical dependencies compiled earlier for this class of composites, the relationships have been derived that made it possible to determine the components of the strain and stresses in the material orthotropy axes through the axial strain of the specimen measured in the experiment. In the linear formulation of two- and three-dimensional problems, numerical experiments have been carried out to determine the parameters of the stress-strain state of specimens consisting of one and two laminas of unidirectional fibrous plastic with $[+45^\circ]$ and $[\pm45^\circ]_2$ structures, respectively. The cases of tension of long and compression of short specimens have been considered; the analysis of the forming stress components along the fibers located in the central part and in the vicinity of the corner points of the specimens has been carried out. Experiments on the tension of flat specimens from a fiber composite with a $[\pm45^\circ]_{2s}$ lay-up to determine the deformed state using a non-contact strain measurement system have been performed. The obtained results allow to indicate areas in which the implementation and continuous change of internal non-classical buckling modes of structural elements of fibrous composites are possible during the loading process, which is probably one of the reasons for the physically nonlinear behavior of specimens with the $[\pm45^\circ]_{2s}$ lay-up under tension and compression.
Keywords: fiber reinforced plastic, structural elements, fiber, binder, specimen, cross-ply layout
Mots-clés : tension, compression.
@article{UZKU_2019_161_1_a6,
     author = {V. N. Paimushin and R. A. Kayumov and V. A. Firsov and R. K. Gazizullin and S. A. Kholmogorov and M. A. Shishov},
     title = {Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: {Numerical} and experimental investigation of forming stresses and strains},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {86--109},
     year = {2019},
     volume = {161},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a6/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - R. A. Kayumov
AU  - V. A. Firsov
AU  - R. K. Gazizullin
AU  - S. A. Kholmogorov
AU  - M. A. Shishov
TI  - Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: Numerical and experimental investigation of forming stresses and strains
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 86
EP  - 109
VL  - 161
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a6/
LA  - ru
ID  - UZKU_2019_161_1_a6
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A R. A. Kayumov
%A V. A. Firsov
%A R. K. Gazizullin
%A S. A. Kholmogorov
%A M. A. Shishov
%T Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: Numerical and experimental investigation of forming stresses and strains
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 86-109
%V 161
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a6/
%G ru
%F UZKU_2019_161_1_a6
V. N. Paimushin; R. A. Kayumov; V. A. Firsov; R. K. Gazizullin; S. A. Kholmogorov; M. A. Shishov. Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: Numerical and experimental investigation of forming stresses and strains. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 86-109. http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a6/

[1] Guz' A. N., Stability of Elastic Bodies for Finite Deformation, Naukova Dumka, Kiev, 1973, 270 pp. (In Russian)

[2] Bolotin V. V., Novichkov Yu. N., Mechanics of Multilayer Structures, Mashinostroenie, M., 1980, 375 pp. (In Russian)

[3] Agarwal B. D., Broutman L. J., Analysis and Performance of Fiber Composites, John Wiley Sons, N. Y., 1980, 355 pp.

[4] Broutman L. J., Agarwal B. D., “Effect of the interface on the mechanical properties of composite materials”, Rheol. Acta, 13:3 (1974), 618–626 | DOI

[5] Allen H. G., Analysis and Design of Structural Sandwich Panels, Pergamon Press, London, 1969, 284 pp. | MR

[6] Harris B. J., Crisman W. C., “Face-wrinkling mode of buckling of sandwich panels”, ASCE J. Eng. Mech. Div., 91 (1965), 93–111

[7] Hashin Z., “Failure criteria for unidirectional fibre composites”, J. Appl. Mech., 47:2 (1980), 329–334 | DOI

[8] Hashin Z., Rotem A., “A fatigue failure criterion for fiber reinforced materials”, J. Compos. Mater., 7:4 (1973), 448–464 | DOI

[9] Xu Y. L., Reifsnider K. L., “Micromechanical modeling of composite compressive strength”, J. Compos. Mater., 27:6 (1993), 572–588 | DOI

[10] Badriev I. B., Makarov M. V., Paimushin V. N., Kholmogorov S. A., “The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 4, 2017, 395–428 (In Russian) | MR

[11] Badriev I. B., Paimushin V. N., “Mathematical modeling of a dynamic thin plate deformation in acoustoelasticity problems”, IOP Conf. Ser.: Earth Environ. Sci., 107 (2018), 012095, 1–9 | DOI

[12] Paimushin V. N., Kholmogorov S. A., Gazizullin R. K., “Mechanics of unidirectional fiber-reinforced composites: Buckling modes and failure under compression along fibers”, Mech. Compos. Mater., 53:6 (2017), 737–752 | DOI | MR

[13] Paimushin V. N., Shalashilin V. I., “The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures”, J. Appl. Math. Mech., 69:5 (2005), 773–791 | DOI | MR

[14] Paimushin V. N., Shalashilin V. I., “Consistent variant of continuum deformation theory in the quadratic approximation”, Dokl. Phys., 49:6 (2004), 374–377 | DOI | MR

[15] Paimushin V. N., Kholmogorov S. A., Makarov M. V., Tarlakovskii D. V., Lukaszewicz A., “Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests”, Z. Angew. Math. Mech., 99:1 (2019), e201800063, 1–25 | DOI | MR

[16] Paimushin V. N., Kholmogorov S. A., “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder”, Mech. Compos. Mater., 54:1 (2018), 2–12 | DOI | MR

[17] Rosen B. W., “Mechanics of composite strengthening”, Fibre Composite Materials, Am. Soc. Metals Seminar, Am. Soc. Metals, 1965, 37–75

[18] Budiansky B., Fleck N. A., “Compressive failure of fibre composites”, J. Mech. Phys. Solids, 41:1 (1993), 183–211 | DOI

[19] Zhang G., Latour R. A. Jr., “FRP composite compressive strength and its dependence upon interfacial bond strength, fiber misalignment, and matrix nonlinearity”, J. Thermoplast. Compos. Mater., 6:4 (1993), 298–311 | DOI

[20] Zhang G., Latour R. A. Jr., “An analytical and numerical study of fiber microbuckling”, Compos. Sci. Technol., 51:1 (1994), 95–109 | DOI

[21] Naik N. K., Kumar R. S., “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models”, Compos. Struct., 46:3 (1999), 299–308 | DOI

[22] Jumahat A., Soutis C., Jones F. R., Hodzic A., “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading”, Compos. Struct., 92:2 (2010), 295–305 | DOI

[23] Paimushin V. N., Polyakova N. V., Kholmogorov S. A., Shishov M. A., “Buckling modes of structural elements of off-axis fiber-reinforced plastics”, Mech. Compos. Mater., 54:2 (2018), 133–144 | DOI

[24] Paimushin V. N., Polyakova N. V., Kholmogorov S. A., Shishov M. S., “Non-uniformly scaled buckling modes of reinforcing elements in fiber reinforced plastic”, Russ. Math., 61:9 (2017), 79–84 | DOI | Zbl

[25] Giannadakis K., Varna J., “Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite”, Composites, Part A, 62 (2014), 67–76 | DOI

[26] Paimushin V. N., Kholmogorov S. A., Kayumov R. A., “Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 4, 2017, 395–428 (In Russian)

[27] Paimushin V. N., Kayumov R. A., Kholmogorov S. A., Shishkin V. M., “Defining relations in mechanics of cross-ply fiber reinforced plastics under short-term and long-term monoaxial load”, Russ. Math., 62:6 (2018), 75–79 | DOI | MR | Zbl

[28] ASTM-D3518/D3518M-94. Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a $\pm45^\circ$ Laminate, ASTM, West Conshohocken, PA, 1994, 7 pp.

[29] State Standard 32658-2014. Polymer composites. Determination of mechanical properties in the plane of shear reinforcement by a tensile test at an angle of $\pm45$ degree, Standartinform, M., 2014, 15 pp. (In Russian)

[30] Rosen B. W., “A simple procedure for experimental determination of the longitudinal shear modulus of unidirectional composites”, J. Compos. Mater., 6:3 (1972), 552–554 | DOI