Mots-clés : tension, compression.
@article{UZKU_2019_161_1_a6,
author = {V. N. Paimushin and R. A. Kayumov and V. A. Firsov and R. K. Gazizullin and S. A. Kholmogorov and M. A. Shishov},
title = {Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: {Numerical} and experimental investigation of forming stresses and strains},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {86--109},
year = {2019},
volume = {161},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a6/}
}
TY - JOUR
AU - V. N. Paimushin
AU - R. A. Kayumov
AU - V. A. Firsov
AU - R. K. Gazizullin
AU - S. A. Kholmogorov
AU - M. A. Shishov
TI - Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: Numerical and experimental investigation of forming stresses and strains
JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY - 2019
SP - 86
EP - 109
VL - 161
IS - 1
UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a6/
LA - ru
ID - UZKU_2019_161_1_a6
ER -
%0 Journal Article
%A V. N. Paimushin
%A R. A. Kayumov
%A V. A. Firsov
%A R. K. Gazizullin
%A S. A. Kholmogorov
%A M. A. Shishov
%T Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: Numerical and experimental investigation of forming stresses and strains
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 86-109
%V 161
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a6/
%G ru
%F UZKU_2019_161_1_a6
V. N. Paimushin; R. A. Kayumov; V. A. Firsov; R. K. Gazizullin; S. A. Kholmogorov; M. A. Shishov. Tension and compression of flat $[\pm45^\circ]_{2s}$ specimens from fiber reinforced plastic: Numerical and experimental investigation of forming stresses and strains. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 86-109. http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a6/
[1] Guz' A. N., Stability of Elastic Bodies for Finite Deformation, Naukova Dumka, Kiev, 1973, 270 pp. (In Russian)
[2] Bolotin V. V., Novichkov Yu. N., Mechanics of Multilayer Structures, Mashinostroenie, M., 1980, 375 pp. (In Russian)
[3] Agarwal B. D., Broutman L. J., Analysis and Performance of Fiber Composites, John Wiley Sons, N. Y., 1980, 355 pp.
[4] Broutman L. J., Agarwal B. D., “Effect of the interface on the mechanical properties of composite materials”, Rheol. Acta, 13:3 (1974), 618–626 | DOI
[5] Allen H. G., Analysis and Design of Structural Sandwich Panels, Pergamon Press, London, 1969, 284 pp. | MR
[6] Harris B. J., Crisman W. C., “Face-wrinkling mode of buckling of sandwich panels”, ASCE J. Eng. Mech. Div., 91 (1965), 93–111
[7] Hashin Z., “Failure criteria for unidirectional fibre composites”, J. Appl. Mech., 47:2 (1980), 329–334 | DOI
[8] Hashin Z., Rotem A., “A fatigue failure criterion for fiber reinforced materials”, J. Compos. Mater., 7:4 (1973), 448–464 | DOI
[9] Xu Y. L., Reifsnider K. L., “Micromechanical modeling of composite compressive strength”, J. Compos. Mater., 27:6 (1993), 572–588 | DOI
[10] Badriev I. B., Makarov M. V., Paimushin V. N., Kholmogorov S. A., “The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 4, 2017, 395–428 (In Russian) | MR
[11] Badriev I. B., Paimushin V. N., “Mathematical modeling of a dynamic thin plate deformation in acoustoelasticity problems”, IOP Conf. Ser.: Earth Environ. Sci., 107 (2018), 012095, 1–9 | DOI
[12] Paimushin V. N., Kholmogorov S. A., Gazizullin R. K., “Mechanics of unidirectional fiber-reinforced composites: Buckling modes and failure under compression along fibers”, Mech. Compos. Mater., 53:6 (2017), 737–752 | DOI | MR
[13] Paimushin V. N., Shalashilin V. I., “The relations of deformation theory in the quadratic approximation and the problems of constructing improved versions of the geometrically non-linear theory of laminated structures”, J. Appl. Math. Mech., 69:5 (2005), 773–791 | DOI | MR
[14] Paimushin V. N., Shalashilin V. I., “Consistent variant of continuum deformation theory in the quadratic approximation”, Dokl. Phys., 49:6 (2004), 374–377 | DOI | MR
[15] Paimushin V. N., Kholmogorov S. A., Makarov M. V., Tarlakovskii D. V., Lukaszewicz A., “Mechanics of fiber composites: Forms of loss of stability and fracture of test specimens resulting from three-point bending tests”, Z. Angew. Math. Mech., 99:1 (2019), e201800063, 1–25 | DOI | MR
[16] Paimushin V. N., Kholmogorov S. A., “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder”, Mech. Compos. Mater., 54:1 (2018), 2–12 | DOI | MR
[17] Rosen B. W., “Mechanics of composite strengthening”, Fibre Composite Materials, Am. Soc. Metals Seminar, Am. Soc. Metals, 1965, 37–75
[18] Budiansky B., Fleck N. A., “Compressive failure of fibre composites”, J. Mech. Phys. Solids, 41:1 (1993), 183–211 | DOI
[19] Zhang G., Latour R. A. Jr., “FRP composite compressive strength and its dependence upon interfacial bond strength, fiber misalignment, and matrix nonlinearity”, J. Thermoplast. Compos. Mater., 6:4 (1993), 298–311 | DOI
[20] Zhang G., Latour R. A. Jr., “An analytical and numerical study of fiber microbuckling”, Compos. Sci. Technol., 51:1 (1994), 95–109 | DOI
[21] Naik N. K., Kumar R. S., “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models”, Compos. Struct., 46:3 (1999), 299–308 | DOI
[22] Jumahat A., Soutis C., Jones F. R., Hodzic A., “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading”, Compos. Struct., 92:2 (2010), 295–305 | DOI
[23] Paimushin V. N., Polyakova N. V., Kholmogorov S. A., Shishov M. A., “Buckling modes of structural elements of off-axis fiber-reinforced plastics”, Mech. Compos. Mater., 54:2 (2018), 133–144 | DOI
[24] Paimushin V. N., Polyakova N. V., Kholmogorov S. A., Shishov M. S., “Non-uniformly scaled buckling modes of reinforcing elements in fiber reinforced plastic”, Russ. Math., 61:9 (2017), 79–84 | DOI | Zbl
[25] Giannadakis K., Varna J., “Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite”, Composites, Part A, 62 (2014), 67–76 | DOI
[26] Paimushin V. N., Kholmogorov S. A., Kayumov R. A., “Experimental investigation of residual strain formation mechanisms in composite laminates under cycling loading”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 4, 2017, 395–428 (In Russian)
[27] Paimushin V. N., Kayumov R. A., Kholmogorov S. A., Shishkin V. M., “Defining relations in mechanics of cross-ply fiber reinforced plastics under short-term and long-term monoaxial load”, Russ. Math., 62:6 (2018), 75–79 | DOI | MR | Zbl
[28] ASTM-D3518/D3518M-94. Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a $\pm45^\circ$ Laminate, ASTM, West Conshohocken, PA, 1994, 7 pp.
[29] State Standard 32658-2014. Polymer composites. Determination of mechanical properties in the plane of shear reinforcement by a tensile test at an angle of $\pm45$ degree, Standartinform, M., 2014, 15 pp. (In Russian)
[30] Rosen B. W., “A simple procedure for experimental determination of the longitudinal shear modulus of unidirectional composites”, J. Compos. Mater., 6:3 (1972), 552–554 | DOI