Seepage consolidation during elastic body deformation under normal load
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 66-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The process of seepage consolidation of an elastic saturated body under the normal load that is instantly applied to its surface has been considered. An equality obtained using the conditions of compatibility of deformations has been added to the well-known spatial consolidation scheme. It has been shown that the sum of effective normal stresses satisfies the heat equation and can be found as a solution to the corresponding boundary value problem. A pressure-related auxiliary function that satisfies the Laplace equation has been introduced. The boundary condition for it is determined by the boundary condition for the above sum. The proposed scheme for studying the consolidation of an elastic body has been illustrated by the example of uniform normal loading on the surface of an elastic porous sphere. In the analytical form, the pressure of the fluid, the total and effective normal stresses of the skeleton, the displacement of points of the sphere and its surface in the process of consolidation have been found. It has been demonstrated that the pressure of the fluid at each fixed point inside the sphere decreases with increasing time.
Mots-clés : consolidation
Keywords: elastic body, load, pressure.
@article{UZKU_2019_161_1_a4,
     author = {F. M. Kadyrov and A. V. Kosterin and E. V. Skvortsov},
     title = {Seepage consolidation during elastic body deformation under normal load},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {66--74},
     year = {2019},
     volume = {161},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a4/}
}
TY  - JOUR
AU  - F. M. Kadyrov
AU  - A. V. Kosterin
AU  - E. V. Skvortsov
TI  - Seepage consolidation during elastic body deformation under normal load
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 66
EP  - 74
VL  - 161
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a4/
LA  - ru
ID  - UZKU_2019_161_1_a4
ER  - 
%0 Journal Article
%A F. M. Kadyrov
%A A. V. Kosterin
%A E. V. Skvortsov
%T Seepage consolidation during elastic body deformation under normal load
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 66-74
%V 161
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a4/
%G ru
%F UZKU_2019_161_1_a4
F. M. Kadyrov; A. V. Kosterin; E. V. Skvortsov. Seepage consolidation during elastic body deformation under normal load. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 66-74. http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a4/

[1] Tertsagi K., Soil Mechanics Theory, Gosstroiizdat, M., 1961, 507 pp. (In Russian)

[2] Gersevanov N. M., Principles of Soil Dynamics, Gosstroiizdat, M.–L., 1937, 241 pp. (In Russian)

[3] Florin V. A., Theory of Soil Consolidation, Gosstroiizdat, M., 1948, 284 pp. (In Russian)

[4] Florin V. A., Principles of Soil Mechanics, v. 1, Gosstroiizdat, M.–L., 1959, 357 pp. (In Russian)

[5] Biot M. A., “General theory of three-dimensional consolidation”, J. Appl. Phys., 12:2 (1941), 155–164 | DOI | Zbl

[6] Biot M. A., “Consolidation settlement under rectangular load distribution”, J. Appl. Phys., 12:5 (1941), 426–430 | DOI | Zbl

[7] Biot M. A., “General solutions of the equations of elasticity and consolidation for a porous materials”, J. Appl. Mech., 23:1 (1956), 91–96 | MR | Zbl

[8] Nikolaevskii V. N., Basniev K. S., Gorbunov A. T., Zotov G. A., The Mechanics of Saturated Porous Media, Nedra, M., 1970, 335 pp. (In Russian)

[9] Nikolaevskii V. N., Mechanics of Porous and Fissured Media, Nedra, M., 1984, 232 pp. (In Russian)

[10] Bear J., Corapcioglu M. Y., Fundamentals of transport phenomena in porous media, Martinus Nijhoff Publ., Dordrecht, 1984, 1003 pp.

[11] Coussy O., Mechanics and physics of porous solids, John Wiley and Sons, London, 2010, 300 pp.

[12] Shiffman R. L., “A bibliography of consolidation”, Fundamentals of transport phenomena in porous media, eds. Bear J., Corapcioglu M. Y., Martinus Nijhoff Publ., Dordrecht, 1984, 617–669 | DOI

[13] Selvadurai A. P. S., “The analytical method in geomechanics”, Appl. Mech. Rev., 60 (2007), 87–106 | DOI

[14] Kosterin A. V., Skvortsov E. V., “Seepage consolidation of elastic half-space under an axisymmetric load”, Fluid Dyn., 49:5 (2014), 627–633 | DOI | MR | Zbl

[15] Kosterin A. V., Skvortsov E. V., “Seepage consolidation under plane deformation of elastic half-space”, Fluid Dyn., 53:2 (2018), 270–276 | DOI | DOI | MR | Zbl

[16] Timoshenko S. P., Goodier J. N., Theory of Elasticity, McGraw-Hill, New York, 1951, 506 pp. | MR | Zbl

[17] Egorov A. G., Kosterin A. V., Skvortsov E. V., Consolidation and Acoustic Waves in Saturated Porous Media, Izd. Kazan. Univ., Kazan, 1990, 102 pp. (In Russian)

[18] Detornay E., Cheng A. H.-D., “Fundamentals of poroelasticity”, Comprehensive Rock Engineering: Principles, Practice and Projects, v. 2, eds. Hudson J. A., Pergamon Press, Oxford, UK, 1993, 113–171

[19] Cryer C. W., “A comparison of the three-dimensional consolidation theories of Biot and Terzaghi”, Q. J. Mech. Appl. Math., 16:4 (1963), 401–412 | DOI | Zbl

[20] Lure A. I., Spatial Problems of the Theory of Elasticity, Gosizdat. Tekh.-Teor. Lit, M., 1955, 491 pp. (In Russian) | MR

[21] Novatskii V., Theory of Elastisity, Mir, M., 1975, 872 pp. (In Russian)

[22] Polyanin A. D., Handbook of Linear Equations of Mathematical Physics, Fizmatlit, M., 2001, 576 pp. (In Russian)