@article{UZKU_2019_161_1_a10,
author = {R. F. Salimov and I. N. Volodin and N. F. Nasibullina},
title = {Sequential $d$-guaranteed estimate of the normal mean with bounded relative error},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {145--151},
year = {2019},
volume = {161},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a10/}
}
TY - JOUR AU - R. F. Salimov AU - I. N. Volodin AU - N. F. Nasibullina TI - Sequential $d$-guaranteed estimate of the normal mean with bounded relative error JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 145 EP - 151 VL - 161 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a10/ LA - en ID - UZKU_2019_161_1_a10 ER -
%0 Journal Article %A R. F. Salimov %A I. N. Volodin %A N. F. Nasibullina %T Sequential $d$-guaranteed estimate of the normal mean with bounded relative error %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 145-151 %V 161 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a10/ %G en %F UZKU_2019_161_1_a10
R. F. Salimov; I. N. Volodin; N. F. Nasibullina. Sequential $d$-guaranteed estimate of the normal mean with bounded relative error. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 145-151. http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a10/
[1] Salimov R. F., Su-Fen Yang, Turilova E. A., Volodin I. N., “Estimation of the mean value for the normal distribution with constraints on d-risk”, Lobachevskii J. Math., 39:3 (2018), 377–387 | DOI | MR | Zbl
[2] Volodin I. N., “Guaranteed statistical inference procedure (determination of the sample size)”, J. Sov. Math., 44:5 (1989), 568–600 | DOI | MR | Zbl
[3] Salimov R. F., “A sequential $d$-guaranteed test for distinguishing two interval hypotheses”, Lobachevskii J. Math., 37:4 (2016), 500–503 | DOI | MR | Zbl
[4] Roughani G., Mahmoudi E., “Exact risk evaluation of the two-stage estimation of the gamma scale parameter under bounded risk constraint”, Sequential Anal., 34:3 (2015), 387–405 | DOI | MR | Zbl
[5] Mukhopadhyay N., “Improved sequential estimation of means of exponential distributions”, Ann. Inst. Stat. Math., 46:3 (1994), 509–519 | DOI | MR | Zbl
[6] Mukhopadhyay N., Datta S., “On fine-tuned bounded risk sequential point estimation of the mean of an exponential distribution”, S. Afr. Stat. J., 29:1 (1995), 9–27 | MR | Zbl
[7] Mukhopadhyay N., Pepe W., “Exact bounded risk estimation when the terminal sample size and estimator are dependent: The exponential case”, Sequential Anal., 25:1 (2006), 85–101 | DOI | MR | Zbl
[8] Zacks S., Mukhopadhyay N., “Bounded risk estimation of the exponential parameter in a two-stage sampling”, Sequential Anal., 25:4 (2006), 437–452 | DOI | MR | Zbl
[9] Zacks S., Mukhopadhyay N., “Exact risks of sequential point estimators of the exponential parameter”, Sequential Anal., 25:2 (2006), 203–220 | DOI | MR
[10] Volodin I. N., “Optimum sample size in statistical inference procedures”, Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 12, 33–45 (In Russian) | MR | Zbl
[11] Simushkin S. V., Volodin I. N., “Statistical inference with a minimal $d$-risk”, Lect. Notes Math., 1021, 1983, 629–636 | DOI | MR