Sequential $d$-guaranteed estimate of the normal mean with bounded relative error
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 145-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we continue our research on evaluation of the mean value of the normal distribution with prior information that this parameter is positive and very small. These data are obtained by using a prior exponential distribution with a large intensity parameter. The estimation problem with guaranteed relative error is considered. This issue is more important when small fractions are estimated. In addition to restrictions on the relative error, the procedure must have a given level of $d$-risk. We suggest a sequential procedure based on the first achievement by posterior probability of estimate reliability of a given level $1- \beta$. The procedure is adapted to the problem of estimating harmful impurities in food products.
Keywords: first crossing procedure, normal mean estimation, $d$-posterior approach, sequential estimation.
@article{UZKU_2019_161_1_a10,
     author = {R. F. Salimov and I. N. Volodin and N. F. Nasibullina},
     title = {Sequential $d$-guaranteed estimate of the normal mean with bounded relative error},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {145--151},
     year = {2019},
     volume = {161},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a10/}
}
TY  - JOUR
AU  - R. F. Salimov
AU  - I. N. Volodin
AU  - N. F. Nasibullina
TI  - Sequential $d$-guaranteed estimate of the normal mean with bounded relative error
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 145
EP  - 151
VL  - 161
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a10/
LA  - en
ID  - UZKU_2019_161_1_a10
ER  - 
%0 Journal Article
%A R. F. Salimov
%A I. N. Volodin
%A N. F. Nasibullina
%T Sequential $d$-guaranteed estimate of the normal mean with bounded relative error
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 145-151
%V 161
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a10/
%G en
%F UZKU_2019_161_1_a10
R. F. Salimov; I. N. Volodin; N. F. Nasibullina. Sequential $d$-guaranteed estimate of the normal mean with bounded relative error. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 145-151. http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a10/

[1] Salimov R. F., Su-Fen Yang, Turilova E. A., Volodin I. N., “Estimation of the mean value for the normal distribution with constraints on d-risk”, Lobachevskii J. Math., 39:3 (2018), 377–387 | DOI | MR | Zbl

[2] Volodin I. N., “Guaranteed statistical inference procedure (determination of the sample size)”, J. Sov. Math., 44:5 (1989), 568–600 | DOI | MR | Zbl

[3] Salimov R. F., “A sequential $d$-guaranteed test for distinguishing two interval hypotheses”, Lobachevskii J. Math., 37:4 (2016), 500–503 | DOI | MR | Zbl

[4] Roughani G., Mahmoudi E., “Exact risk evaluation of the two-stage estimation of the gamma scale parameter under bounded risk constraint”, Sequential Anal., 34:3 (2015), 387–405 | DOI | MR | Zbl

[5] Mukhopadhyay N., “Improved sequential estimation of means of exponential distributions”, Ann. Inst. Stat. Math., 46:3 (1994), 509–519 | DOI | MR | Zbl

[6] Mukhopadhyay N., Datta S., “On fine-tuned bounded risk sequential point estimation of the mean of an exponential distribution”, S. Afr. Stat. J., 29:1 (1995), 9–27 | MR | Zbl

[7] Mukhopadhyay N., Pepe W., “Exact bounded risk estimation when the terminal sample size and estimator are dependent: The exponential case”, Sequential Anal., 25:1 (2006), 85–101 | DOI | MR | Zbl

[8] Zacks S., Mukhopadhyay N., “Bounded risk estimation of the exponential parameter in a two-stage sampling”, Sequential Anal., 25:4 (2006), 437–452 | DOI | MR | Zbl

[9] Zacks S., Mukhopadhyay N., “Exact risks of sequential point estimators of the exponential parameter”, Sequential Anal., 25:2 (2006), 203–220 | DOI | MR

[10] Volodin I. N., “Optimum sample size in statistical inference procedures”, Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 12, 33–45 (In Russian) | MR | Zbl

[11] Simushkin S. V., Volodin I. N., “Statistical inference with a minimal $d$-risk”, Lect. Notes Math., 1021, 1983, 629–636 | DOI | MR