The modified method of contour dynamics and modeling of vortical structures
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 5-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper considers one of the most effective methods for modeling vortical structures, which are described by the $2$-dimensional equation of carry of a vortex and by the Poisson equation for a flow function, namely, the contour dynamics method based on representation of a vortical stream by finite-area vortical regions. A modification of the contour dynamics method minimizing the errors arising at its direct application to description of vortical structures has been elaborated. The examples of the results of numerical experiments on the study of the dynamics of interaction of vortical structures for various configurations of their relative positioning, signs of vorticity, and distances between borders of the finite-area vortical regions have been presented.
Keywords: vortices, finite-area vortical regions, modeling, hydrodynamics, modified contour dynamics method, regimes of interaction, quasi-recurrence phenomenon
Mots-clés : phase intermixing.
@article{UZKU_2019_161_1_a0,
     author = {V. Yu. Belashov and O. A. Kharshiladze},
     title = {The modified method of contour dynamics and modeling of vortical structures},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--23},
     year = {2019},
     volume = {161},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a0/}
}
TY  - JOUR
AU  - V. Yu. Belashov
AU  - O. A. Kharshiladze
TI  - The modified method of contour dynamics and modeling of vortical structures
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2019
SP  - 5
EP  - 23
VL  - 161
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a0/
LA  - ru
ID  - UZKU_2019_161_1_a0
ER  - 
%0 Journal Article
%A V. Yu. Belashov
%A O. A. Kharshiladze
%T The modified method of contour dynamics and modeling of vortical structures
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2019
%P 5-23
%V 161
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a0/
%G ru
%F UZKU_2019_161_1_a0
V. Yu. Belashov; O. A. Kharshiladze. The modified method of contour dynamics and modeling of vortical structures. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a0/

[1] Belotserkovskii O. M., Oparin A. M., Numerical Experiments in Turbulence from Order to Chaos, Nauka, M., 2000, 223 pp. (In Russian)

[2] Lamb H., Hydrodynamics, Dover Publ., New York, 1945, 735 pp. ; т. 2, 638 с.

[3] Monin A. S., Yaglom A. M., Statistical Hydromechanics, v. 1, Nauka, M., 1967, 720 pp.; v. 2, 638 pp. (In Russian)

[4] Kochin N. E., Kibel' I. A., Roze N. V., Theoretical Hydromechanics, v. 1, Nauka, M., 1963, 584 pp. (In Russian)

[5] Roache P. J., Computational Fluid Dynamics, Hermosa, Albuquerque, NM, 1982, 612 pp. | MR

[6] Alder B. J., Fernbach S., Rotenberg M. (eds.), Fundamental Methods in Hydrodynamics, Acad. Press, New York, 1964, 386 pp. | MR

[7] Deem G. S., Zabusky N. J., “Stationary V-states, interactions, recurrence, and breaking”, Solitons in Action, eds. Lonngren K., Scott A., Academic, 1978, 277–293 | MR

[8] Zabusky N. J., Hughes M. N., Roberts K. V., “Contour dynamics for the Euler equations in two dimensions”, J. Comput. Phys., 30:1 (1979), 96–106 | DOI | MR | Zbl

[9] Potter D., Computational Physics, John Wiley Sons Ltd, London, 1973, 392 pp. | MR | Zbl

[10] Berezin Yu. A., Fedorchuk N. P., Simulation of Nonstationary Plasma Processes, Nauka, Novosibirsk, 1993, 357 pp. (In Russian)

[11] Belotserkovskii S. M., Ginevskii A. S., Modeling of Turbulent Jets and Traces on the Basis of Discrete Vortices, Fiz.-Mat. Lit, M., 1995, 365 pp. (In Russian) | MR

[12] Belashov V. Yu., Singatulin R. M., Algorithm of the Contour Dynamics Method and Simulation of the Vortical Structures, Dep. VINITI on Feb. 11, 2003, No 272-B2003, KGEU, Kazan, 2003, 39 pp. (In Russian)

[13] Overman E. A., Zabusky N. J., “Coaxial scattering of Euler-equation translating V-states via contour dynamics”, J. Fluid Mech., 125 (1982), 187–202 | DOI | MR | Zbl

[14] Baker G. R., “A study of the numerical stability of the method of contour dynamics”, Philos. Trans. R. Soc. A, 333 (1990), 391–400 | DOI | MR | Zbl

[15] Belashov V. Yu., Singatulin R. M., “Dynamics of vortex type wave structures in plasmas and fluids. Plasma Physics”, AIP Conf. Proc., 669 (2003), 609–612 | DOI

[16] Belashov V. Yu., Kharshiladze O. A., “A modified CD method and simulation of vortical structures”, Proc. 12th Annu. Conf. “Plasma Physics in the Solar System”, IKI Ross. Akad. Nauk, M., 2017, 160 (In Russian)

[17] Belashov V. Yu., “Modeling of dynamics of vortex structures in continuous media”, Astrophys. Aerosp. Technol., 4:3 (2016), 28

[18] Saffman P. G., Vortex Dynamics, Cambridge Univ. Press, 1993, 376 pp. | MR

[19] Belashov V. Yu., Belashova E. S., Kharshiladze O. A., “Modified CD method and simulation of vortical structures in a plasma and fluids”, J. Phys. Chem. Biophys., 8 (2018), 61 | DOI | MR

[20] Belashov V. Yu., Kharshiladze O. A., “Numerical modeling of interaction of vortex structures in fluids and plasmas”, VIII Annu. Meet. of the Georgian Mechanical Union, Book of Abstracts, Tbilisi Univ. Press, Tbilisi, 2017, 31–32

[21] Pokhotelov O. A., Stenflo L., Shukla P. K., “Nonlinear structures in the Earth's magnetosphere and atmosphere”, Plasma Phys. Rep., 22:10 (1996), 852–863

[22] Belashov V. Yu., “Interaction of $N$-vortex structures in a continuum, including atmosphere, hydrosphere and plasma”, Adv. Space Res., 60:8 (2017), 1878–1890 | DOI

[23] Belashov V. Yu., “Numerical study of interaction of vortex structures in plasmas and fluids”, J. Phys. Chem. Biophys., 7:3, Suppl. (2017), 49 | DOI

[24] Belashov V. Yu., Belashova E. S., Kharshiladze O. A., Nonlinear wave structures of the soliton and vortex types in complex continuous media: Theory, simulation, applications, Lecture Notes of TICMI, 18, Tbilisi Univ. Press, Tbilisi, 2018, 90 pp. | MR