Mots-clés : phase intermixing.
@article{UZKU_2019_161_1_a0,
author = {V. Yu. Belashov and O. A. Kharshiladze},
title = {The modified method of contour dynamics and modeling of vortical structures},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {5--23},
year = {2019},
volume = {161},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a0/}
}
TY - JOUR AU - V. Yu. Belashov AU - O. A. Kharshiladze TI - The modified method of contour dynamics and modeling of vortical structures JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2019 SP - 5 EP - 23 VL - 161 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a0/ LA - ru ID - UZKU_2019_161_1_a0 ER -
%0 Journal Article %A V. Yu. Belashov %A O. A. Kharshiladze %T The modified method of contour dynamics and modeling of vortical structures %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2019 %P 5-23 %V 161 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a0/ %G ru %F UZKU_2019_161_1_a0
V. Yu. Belashov; O. A. Kharshiladze. The modified method of contour dynamics and modeling of vortical structures. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 161 (2019) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/UZKU_2019_161_1_a0/
[1] Belotserkovskii O. M., Oparin A. M., Numerical Experiments in Turbulence from Order to Chaos, Nauka, M., 2000, 223 pp. (In Russian)
[2] Lamb H., Hydrodynamics, Dover Publ., New York, 1945, 735 pp. ; т. 2, 638 с.
[3] Monin A. S., Yaglom A. M., Statistical Hydromechanics, v. 1, Nauka, M., 1967, 720 pp.; v. 2, 638 pp. (In Russian)
[4] Kochin N. E., Kibel' I. A., Roze N. V., Theoretical Hydromechanics, v. 1, Nauka, M., 1963, 584 pp. (In Russian)
[5] Roache P. J., Computational Fluid Dynamics, Hermosa, Albuquerque, NM, 1982, 612 pp. | MR
[6] Alder B. J., Fernbach S., Rotenberg M. (eds.), Fundamental Methods in Hydrodynamics, Acad. Press, New York, 1964, 386 pp. | MR
[7] Deem G. S., Zabusky N. J., “Stationary V-states, interactions, recurrence, and breaking”, Solitons in Action, eds. Lonngren K., Scott A., Academic, 1978, 277–293 | MR
[8] Zabusky N. J., Hughes M. N., Roberts K. V., “Contour dynamics for the Euler equations in two dimensions”, J. Comput. Phys., 30:1 (1979), 96–106 | DOI | MR | Zbl
[9] Potter D., Computational Physics, John Wiley Sons Ltd, London, 1973, 392 pp. | MR | Zbl
[10] Berezin Yu. A., Fedorchuk N. P., Simulation of Nonstationary Plasma Processes, Nauka, Novosibirsk, 1993, 357 pp. (In Russian)
[11] Belotserkovskii S. M., Ginevskii A. S., Modeling of Turbulent Jets and Traces on the Basis of Discrete Vortices, Fiz.-Mat. Lit, M., 1995, 365 pp. (In Russian) | MR
[12] Belashov V. Yu., Singatulin R. M., Algorithm of the Contour Dynamics Method and Simulation of the Vortical Structures, Dep. VINITI on Feb. 11, 2003, No 272-B2003, KGEU, Kazan, 2003, 39 pp. (In Russian)
[13] Overman E. A., Zabusky N. J., “Coaxial scattering of Euler-equation translating V-states via contour dynamics”, J. Fluid Mech., 125 (1982), 187–202 | DOI | MR | Zbl
[14] Baker G. R., “A study of the numerical stability of the method of contour dynamics”, Philos. Trans. R. Soc. A, 333 (1990), 391–400 | DOI | MR | Zbl
[15] Belashov V. Yu., Singatulin R. M., “Dynamics of vortex type wave structures in plasmas and fluids. Plasma Physics”, AIP Conf. Proc., 669 (2003), 609–612 | DOI
[16] Belashov V. Yu., Kharshiladze O. A., “A modified CD method and simulation of vortical structures”, Proc. 12th Annu. Conf. “Plasma Physics in the Solar System”, IKI Ross. Akad. Nauk, M., 2017, 160 (In Russian)
[17] Belashov V. Yu., “Modeling of dynamics of vortex structures in continuous media”, Astrophys. Aerosp. Technol., 4:3 (2016), 28
[18] Saffman P. G., Vortex Dynamics, Cambridge Univ. Press, 1993, 376 pp. | MR
[19] Belashov V. Yu., Belashova E. S., Kharshiladze O. A., “Modified CD method and simulation of vortical structures in a plasma and fluids”, J. Phys. Chem. Biophys., 8 (2018), 61 | DOI | MR
[20] Belashov V. Yu., Kharshiladze O. A., “Numerical modeling of interaction of vortex structures in fluids and plasmas”, VIII Annu. Meet. of the Georgian Mechanical Union, Book of Abstracts, Tbilisi Univ. Press, Tbilisi, 2017, 31–32
[21] Pokhotelov O. A., Stenflo L., Shukla P. K., “Nonlinear structures in the Earth's magnetosphere and atmosphere”, Plasma Phys. Rep., 22:10 (1996), 852–863
[22] Belashov V. Yu., “Interaction of $N$-vortex structures in a continuum, including atmosphere, hydrosphere and plasma”, Adv. Space Res., 60:8 (2017), 1878–1890 | DOI
[23] Belashov V. Yu., “Numerical study of interaction of vortex structures in plasmas and fluids”, J. Phys. Chem. Biophys., 7:3, Suppl. (2017), 49 | DOI
[24] Belashov V. Yu., Belashova E. S., Kharshiladze O. A., Nonlinear wave structures of the soliton and vortex types in complex continuous media: Theory, simulation, applications, Lecture Notes of TICMI, 18, Tbilisi Univ. Press, Tbilisi, 2018, 90 pp. | MR