@article{UZKU_2018_160_4_a9,
author = {O. V. Pinyagina},
title = {A coordinate descent method for market equilibrium problems with price groups},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {718--730},
year = {2018},
volume = {160},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a9/}
}
TY - JOUR AU - O. V. Pinyagina TI - A coordinate descent method for market equilibrium problems with price groups JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 718 EP - 730 VL - 160 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a9/ LA - ru ID - UZKU_2018_160_4_a9 ER -
%0 Journal Article %A O. V. Pinyagina %T A coordinate descent method for market equilibrium problems with price groups %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 718-730 %V 160 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a9/ %G ru %F UZKU_2018_160_4_a9
O. V. Pinyagina. A coordinate descent method for market equilibrium problems with price groups. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 718-730. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a9/
[1] Konnov I. V., “On variational inequalities for auction market problems”, Optim. Lett., 1:2 (2007), 155–162 | DOI | MR | Zbl
[2] Konnov I. V., “Spatial equilibrium problems for auction-type systems”, Russ. Math., 52:1 (2008), 30–44 | DOI | MR | Zbl
[3] Konnov I. V., “On auction equilibrium models with network applications”, Netnomics, 16:1 (2015), 107–125 | DOI
[4] Konnov I. V., “An alternative economic equilibrium model with different implementation mechanisms”, Adv. Model. Optim., 17:2 (2015), 245–265 | DOI | Zbl
[5] Konnov I. V., Dyabilkin D. A., “Nonmonotone equilibrium problems: Coercivity conditions and weak regularization”, J. Global Optim., 49:4 (2011), 575–587 | DOI | MR | Zbl
[6] Konnov I. V., “Selective bi-coordinate variations for resource allocation type problems”, Comput. Optim. Appl., 64:3 (2016), 821–842 | DOI | MR | Zbl
[7] Konnov I. V., “A method of bi-coordinate variations with tolerances and its convergence”, Russ. Math., 60:1 (2016), 68–72 | DOI | MR | Zbl
[8] Ekeland I., Temam R., Analyse convexe et problemes variationnels, Dunod-Gauthier-Villars, Paris, 1974, 340 pp. (In French) | MR | Zbl
[9] Armijo L., “Minimization of functions having Lipschitz continuous first partial derivatives”, Pac. J. Math., 16:1 (1966), 1–3 | DOI | MR | Zbl