Numerical analysis of nonlinear bending of the safety bursting disks subjected to the pressure and temperature of the operating medium
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 670-680 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Nonlinear straining of thin ellipsoidal segments being under the pressure of the heated or cooled operating medium on their concave surfaces has been numerically studied. The analysis of the segments stress-strain state has been performed in terms of their use as bursting safety disks. Deformation of the disks has been studied in a wide temperature range for different constructive options, such as the absence of limited displacement in a segment pole and the presence of bursting rod above the pole of unstrained dome. It has been shown that the ellipsoidal segment fails to meet the conditions of actuation of the safety disks in the absence of a bursting rod. A segment can be used as a safety bursting disk of the dangerously explosive apparatuses if there is a limited displacement in the segment pole. It has been found that the segment is actuated at a lower pressure with increasing temperature at a constant position of a bursting rod. The results obtained for ellipsoidal and spherical segments having the same bases and the height of the pole above the base have been compared. It has been revealed that the bursting pressure of the ellipsoidal segment is significantly lower than the bursting pressure of a spherical segment of similar geometry at the same process medium temperature and rod location.
Keywords: safety bursting disks, ellipsoidal segment, pressure, temperature, nonlinear bending.
@article{UZKU_2018_160_4_a5,
     author = {M. S. Ganeeva and V. E. Moiseeva and Z. V. Skvortsova},
     title = {Numerical analysis of nonlinear bending of the safety bursting disks subjected to the pressure and temperature of the operating medium},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {670--680},
     year = {2018},
     volume = {160},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a5/}
}
TY  - JOUR
AU  - M. S. Ganeeva
AU  - V. E. Moiseeva
AU  - Z. V. Skvortsova
TI  - Numerical analysis of nonlinear bending of the safety bursting disks subjected to the pressure and temperature of the operating medium
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 670
EP  - 680
VL  - 160
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a5/
LA  - ru
ID  - UZKU_2018_160_4_a5
ER  - 
%0 Journal Article
%A M. S. Ganeeva
%A V. E. Moiseeva
%A Z. V. Skvortsova
%T Numerical analysis of nonlinear bending of the safety bursting disks subjected to the pressure and temperature of the operating medium
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 670-680
%V 160
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a5/
%G ru
%F UZKU_2018_160_4_a5
M. S. Ganeeva; V. E. Moiseeva; Z. V. Skvortsova. Numerical analysis of nonlinear bending of the safety bursting disks subjected to the pressure and temperature of the operating medium. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 670-680. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a5/

[1] Ol'khovskii N. E., Safety Disks, Khimiya, M., 1976, 149 pp. (in Russian)

[2] Ganeeva M. S., Ilgamov M. A., Moiseeva V. E., “Nonlinear bending of plane safety membranes under the action of liquid pressure and temperature”, Izv. Ufim. Nauchn. Tsentra Ross. Akad. Nauk, 2014, no. 2, 41–47 (in Russian)

[3] Ganeeva M. S., Moiseeva V. E., Skvortsova Z. V., “Nonlinear bending and stability of ellipsoidal reverse buckling disks being under the liquid pressure and temperature”, Ekol. Vestn. Nauchn. Tsentrov Chernomorsk. Ekon. Sotr., 2016, no. 2, 37–45 (In Russian)

[4] Il'gamov M. A., Static Problems of Hydroelasticity, Inst. Mekh. Mashinostr. KazNTs Ross. Akad. Nauk, Kazan, 1994, 208 pp. (in Russian)

[5] Ganeeva M. S., Il'gamov M. A., Moiseeva V. E., “Stability of a spherical segment loaded by the pressure of a compressible liquid”, Probl. Prochn. Plast., 71 (2009), 71–76 (In Russian)

[6] Grigolyuk E. I., Kabanov V. V., Stability of Shells, Fizmatlit, M., 1978, 360 pp. (in Russian) | MR

[7] Krivoshapko S. N., “Research on general and axisymmetric ellipsoidal shells used as domes, pressure vessels, and tanks”, Appl. Mech. Rev., 60:6 (2007), 336–355 | DOI

[8] Kovalenko A. D., Basics of Thermoelasticity, Naukova Dumka, Kiev, 1970, 307 pp. (in Russian) | MR

[9] Thornton E. A., “Thermal buckling of plates and shells”, Appl. Mech. Rev., 46:10 (1993), 485–506 | DOI

[10] Ganeeva M. S., The thermal and force problem in the geometrically and physically nonlinear theory of non-thin and thin shells, Dep. VINITI on June 24, 1985, No 4459-85 Dep., Kazan, 1985 (In Russian)

[11] Kapustin S. A., “Numerical analysis of elastic-viscoplastic deformation and failure processes in structures under quasistatic force, thermal and radiation effects”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152, no. 4, 2010, 146–157 (in Russian)

[12] Ganeeva M. S., Kosolapova L. A., “On Hooke's relations in the temperature problem of an elastic solid body”, Proc. of the XII Int. Conf. on the Theory of Shells and Plates, v. 1, Izd. Kazan. Univ., Kazan, 1996, 33–37 (in Russian)

[13] Bezuhov N. I., Bazhanov V. L., Gol'denblatt I. I., Nikolaenko N. A., Sinyukov A. M., The Calculations for Strength, Stability, and Oscillations in High Temperature Conditions, Mashinostroenie, M., 1965, 567 pp. (in Russian)

[14] Il'yushin A. A., Plasticity, v. I, Elastic-plastic deformations, Gostekhteorizdat, M.–L., 1948, 376 pp. (in Russian) | MR

[15] Solntsev Yu. P., Ermakov B. S., Sleptsov O. I., Materials for Low and Cryogenic Temperatures, Encyclopedic Reference Book, Khimizdat, St. Petersburg, 2008, 770 pp. (in Russian)

[16] Novitskii L. A., Kozhevnikov I. G., Thermophysical Properties of Materials at Low Temperatures, Handbook, Mashinostroenie, M., 1975, 216 pp. (in Russian)