A low-rank approximation of tensors and the topological group structure of invertible matrices
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 788-796 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

By a tensor we mean an element of the tensor product of vector spaces over a field. Up to a choice of bases in factors of tensor products, every tensor may be coordinatized, i.e., represented as an array consisting of numbers. The properties of the tensor rank, which is a natural generalization of the matrix rank, have been considered in this paper. The topological group structure of invertible matrices has been studied. The multilinear matrix multiplication has been discussed from the viewpoint of transformation groups. We treat a low-rank tensor approximation in finite-dimensional tensor products. It has been shown that the problem on determining the best rank-$n$ approximation for a tensor of size $n\times n \times 2$ has no solution. To this end, we have used an approximation by matrices with simple spectra.
Keywords: approximation by matrices with simple spectra, low-rank tensor approximation, norm on tensor space, open mapping, simple spectrum of matrix, tensor rank, topological group of invertible matrices, topological transformation group.
Mots-clés : group action
@article{UZKU_2018_160_4_a16,
     author = {R. N. Gumerov and A. Sh. Sharafutdinov},
     title = {A low-rank approximation of tensors and the topological group structure of invertible matrices},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {788--796},
     year = {2018},
     volume = {160},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a16/}
}
TY  - JOUR
AU  - R. N. Gumerov
AU  - A. Sh. Sharafutdinov
TI  - A low-rank approximation of tensors and the topological group structure of invertible matrices
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 788
EP  - 796
VL  - 160
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a16/
LA  - en
ID  - UZKU_2018_160_4_a16
ER  - 
%0 Journal Article
%A R. N. Gumerov
%A A. Sh. Sharafutdinov
%T A low-rank approximation of tensors and the topological group structure of invertible matrices
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 788-796
%V 160
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a16/
%G en
%F UZKU_2018_160_4_a16
R. N. Gumerov; A. Sh. Sharafutdinov. A low-rank approximation of tensors and the topological group structure of invertible matrices. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 788-796. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a16/

[1] Helemskii A. Ya., Quantum functional analysis: Non-coordinate approach, University Lecture Series, 56, Amer. Math. Soc., Providence, Rhode Island, 2010, 241 pp. | DOI | MR | Zbl

[2] Hackbusch W., Tensor Spaces and Numerical Tensor Calculus, Springer, Berlin, 2012, xxiv+500 pp. | DOI | MR | Zbl

[3] Landsberg J. M., Tensors: Geometry and applications, Graduate Studies in Mathematics, 128, Amer. Math. Soc., Providence, Rhode Island, 2012, 439 pp. | MR | Zbl

[4] de Silva V., Lim L.-H., “Tensor rank and the ill-posedness of the best low-rank approximation problem”, SIAM J. Matrix Anal. Appl., 30:3 (2008), 1084–1127 | DOI | MR | Zbl

[5] Bini D., Capovani M., Lotti G., Romani F., “$O(n^{2.7799})$ complexity for $n\times n$ approximate matrix multiplication”, Inf. Process. Lett., 8 (1979), 234–235 | DOI | MR | Zbl

[6] Gumerov R. N., “Homological dimension of radical algebras of Beurling type with a rapidly decreasing weight”, Moscow Univ. Math. Bull., 43:5 (1988), 24–28 | MR | Zbl

[7] Gumerov R. N., “On a geometric test for nontriviality of the simplicial and cyclic cohomology of Banach algebras”, Moscow Univ. Math. Bull., 46:3 (1991), 52–53 | MR | Zbl

[8] Tyrtyshnikov E. E., “Tensor ranks for the inversion of tensor-product binomials”, J. Comput. Appl. Math., 234:11 (2010), 3170–3174 | DOI | MR | Zbl

[9] Gumerov R. N., Vidunov S. I., “Approximation by matrices with simple spectra”, Lobachevskii J. Math., 37:3 (2016), 240–243 | DOI | MR | Zbl

[10] Greub W. H., Multilinear Algebra, Springer-Verlag, Berlin–Heidelberg, 1967, 225 pp. | DOI | MR | Zbl

[11] Helemskii A. Ya., Lectures and exercises on functional analysis, Translations of Mathematical Monographs, 233, Amer. Math. Soc., Providence, 2006, 470 pp. | DOI | MR | Zbl

[12] Bredon G. E., Introduction to Compact Transformation Groups, Acad. Press, New York, 1972, 461 pp. | MR | Zbl

[13] Vries de J., Elements of Topological Dynamics, Springer, Dordrecht, 1993, xvi748 pp. | DOI | MR

[14] Sakata T., Sumi T., Miyazaki M., Algebraic and Computational Aspects of Real Tensor Ranks, Springer, Tokyo, 2016, viii+108 pp. | DOI | MR | Zbl

[15] Hewitt E., Ross K. A., Abstract Harmonic Analysis, v. 1, Springer, Berlin, 1963, 519 pp. | DOI | Zbl

[16] Ja'Ja' J., “Optimal evaluation of a pair of bilinear forms”, SIAM J. Comput., 8:3 (1979), 281–293 | DOI | MR

[17] Sumi T., Miyazaki M., Sakata T., “Rank of 3-tensors with 2 slices and Kronecker canonical forms”, Linear Algebra Appl., 431:10 (2009), 1858–1868 | DOI | MR | Zbl