Mots-clés : Fourier polynomial
@article{UZKU_2018_160_4_a15,
author = {A. El-Shenawy and E. A. Shirokova},
title = {A {Cauchy} integral method to solve the {2D} {Dirichlet} and {Neumann} problems for irregular simply-connected domains},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {778--787},
year = {2018},
volume = {160},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a15/}
}
TY - JOUR AU - A. El-Shenawy AU - E. A. Shirokova TI - A Cauchy integral method to solve the 2D Dirichlet and Neumann problems for irregular simply-connected domains JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 778 EP - 787 VL - 160 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a15/ LA - en ID - UZKU_2018_160_4_a15 ER -
%0 Journal Article %A A. El-Shenawy %A E. A. Shirokova %T A Cauchy integral method to solve the 2D Dirichlet and Neumann problems for irregular simply-connected domains %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 778-787 %V 160 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a15/ %G en %F UZKU_2018_160_4_a15
A. El-Shenawy; E. A. Shirokova. A Cauchy integral method to solve the 2D Dirichlet and Neumann problems for irregular simply-connected domains. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 778-787. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a15/
[1] Fredholm E. I., “Sur une classe d'equations fonctionnelles”, Acta Math., 27 (1903), 365–390 (In French) | DOI | MR | Zbl
[2] Hess J. L., Smith A. M. O., “Calculation of non-lifting potential flow about arbitrary three-dimensional bodies”, J. Ship Res., 8 (1964), 22–44
[3] Jaswon M., “Integral equation methods in potential theory, I”, Proc. R. Soc. London, Ser. A, 275:1360 (1963), 23–32 | DOI | MR | Zbl
[4] Symm G., “Integral equation methods in potential theory, II”, Proc. R. Soc. Ser. A, 275:1360 (1963), 33–46 | DOI | MR | Zbl
[5] Tikhonov A. N., Samarskii A. A., Equations of Mathematical Physics, Dover Publ., New York, 1963, 800 pp. | MR
[6] Tricomi F. G., Integral Equations, Dover Publ., New York, 1982, 238 pp. | MR
[7] Samarskii A. A., Gulin A. V., Numerical Methods, Nauka, M., 1989, 432 pp. (In Russian) | MR
[8] Gakhov F. D., Boundary Value Problems, Pergamon Press, Oxford, 1966, 584 pp. | MR | Zbl
[9] Shirokova E. A., “On the approximate conformal mapping of the unit disk on simply connected domain”, Russ. Math., 58:3 (2014), 47–56 | DOI | MR | Zbl
[10] Ivanshin P. N., Shirokova E. A., “Approximate conformal mappings and elasticity theory”, J. Complex Anal., 2016 (2016), 4367205, 8 pp. | DOI | MR | Zbl
[11] Abzalilov D. F., Shirokova E. A., “The approximate conformal mappings onto simply and doubly connected domains”, Complex Var. Elliptic Equations, 62:4 (2017), 554–565 | DOI | MR | Zbl
[12] Krantz S. G., Handbook of Complex Variables, Springer, New York, 1999, 290 pp. | MR