Harmonic mappings and finite valency of analytic functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 771-777 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The harmonic mappings of a circle into domains that can be cut into a finite number of convex subdomains has been studied. An estimate of the valency of holomorphic mappings of a circle composed of analytical components of the harmonic function has been obtained. In addition, the Keobe harmonic univalent function has been considered to illustrate the results of the research.
Keywords: harmonic function, univalent function, $n$-valent function, convex function, shear construction.
@article{UZKU_2018_160_4_a14,
     author = {L. A. Xuan},
     title = {Harmonic mappings and finite valency of analytic functions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {771--777},
     year = {2018},
     volume = {160},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a14/}
}
TY  - JOUR
AU  - L. A. Xuan
TI  - Harmonic mappings and finite valency of analytic functions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 771
EP  - 777
VL  - 160
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a14/
LA  - ru
ID  - UZKU_2018_160_4_a14
ER  - 
%0 Journal Article
%A L. A. Xuan
%T Harmonic mappings and finite valency of analytic functions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 771-777
%V 160
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a14/
%G ru
%F UZKU_2018_160_4_a14
L. A. Xuan. Harmonic mappings and finite valency of analytic functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 771-777. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a14/

[1] Bieberbach L., “Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln”, S.-B. Preuss. Akad. Wiss. Berlin, 1916, 940–955 (In German) | Zbl

[2] Brilleslyper M. A., Dorff M. J., McDougall J. M., Rolf J. S., Schaubroeck L. E., Stankewitz R. L., Stephenson K., Explorations in Complex Analysis, Math. Association of America, Washington, 2012, 425 pp. | MR | Zbl

[3] Clunie J. G., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. A. I, 9 (1984), 3–25 | MR | Zbl

[4] Duren P., Harmonic Mappings in the Plane, Cambridge Univ. Press, Cambridge, 2004, 226 pp. | DOI | MR | Zbl

[5] Goodman A. W., “An invitation to the study of univalent and multivalent functions”, Int. J. Math. Math. Sci., 2:2 (1979), 163–186 | DOI | MR | Zbl

[6] Kayumov I. R., Ponnusamy S., Xuan L. A., “Rotations of convex harmonic univalent mappings”, Bull. Sci. Math., 2019 | DOI | MR

[7] Ponnusamy S., Kaliraj A. S., “On the coefficient conjecture of Clunie and Sheil-Small on univalent harmonic mappings”, Proc. Math. Sci., 125:3 (2015), 277–290 | DOI | MR | Zbl