A dynamical process of several variables
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 762-770 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the space of $\varphi$-distributions with values belonging to a Banach space, the process described by the problem of partial differential equation has been considered. Conditions under which the process is dynamic have been given. The notion of $\varphi$-distributions and $\varphi$-solutions has been introduced by V.S. Mokeichev as a tool for studying the solvability of some partial differential equations and mathematical models. Thus, it is possible to solve certain problems without any generalized solution (Schwartz distribution). Furthermore, an opportunity to explain the theory of solvability without assumptions on the type of the investigated partial differential equation (elliptic, parabolic, hyperbolic) and on whether the equation is scalar. One of principal advantages of the space of $\varphi$-distributions is that its elements and only they expand in the series by a given system of elements $\varphi$.
Keywords: partial differential equation, $\varphi$-distribution, $\varphi$-solution.
@article{UZKU_2018_160_4_a13,
     author = {V. S. Mokeichev and A. M. Sidorov},
     title = {A dynamical process of several variables},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {762--770},
     year = {2018},
     volume = {160},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a13/}
}
TY  - JOUR
AU  - V. S. Mokeichev
AU  - A. M. Sidorov
TI  - A dynamical process of several variables
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 762
EP  - 770
VL  - 160
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a13/
LA  - ru
ID  - UZKU_2018_160_4_a13
ER  - 
%0 Journal Article
%A V. S. Mokeichev
%A A. M. Sidorov
%T A dynamical process of several variables
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 762-770
%V 160
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a13/
%G ru
%F UZKU_2018_160_4_a13
V. S. Mokeichev; A. M. Sidorov. A dynamical process of several variables. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 762-770. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a13/

[1] Mokeichev V. S., Mokeichev A. V., “A new approach to the theory of linear problems for the systems of partial differential equations. I”, Izv. Vyssh. Uchebn. Zaved., Mat., 1999, no. 1, 25–35 (In Russian) | Zbl

[2] Mokeichev V. S., Mokeichev A. V., “A new approach to the theory of linear problems for the systems of partial differential equations. II”, Izv. Vyssh. Uchebn. Zaved., Mat., 1999, no. 7, 30–41 (In Russian) | MR | Zbl

[3] Mokeichev V. S., Mokeichev A. V., “A new approach to the theory of linear problems for the systems of partial differential equations. III”, Izv. Vyssh. Uchebn. Zaved., Mat., 1999, no. 11, 50–59 (In Russian) | Zbl

[4] Egorov Yu. V., Linear Differential Equations of Principal Type, Nauka, M., 1984, 360 pp. (In Russian)

[5] Mokeichev V. S., Sidorov A. M., “On an expansion in the series by given system of elements”, Issled. Prikl. Mat. Inf., 25, 2004, 163–167 (In Russian)

[6] Mokeichev V. S., Sidorov A. M., “A pseudodifferential operator on a torus”, Proc. 18th Sarat. Int. Winter Math. Sch. “Modern Problems of the Theory of Functions and Their Applications”, Nauchn. Kniga, Saratov, 2016, 193 (In Russian)

[7] Mokeichev V. S., Sidorov A. M., “Correctly solvable problems in linear partial differential equations”, Proc. 13th Int. Kazan. Summer Sch.–Conf. “The Theory of Functions, Its Applications and Related Questions” (Kazan, August 21–27, 2017), Izd. Kazan. Mat. O-va., Izd. Akad. Nauk RT, Kazan, 2017, 264–265 (In Russian)

[8] Mokeichev V. S., Sidorov A. M., “On the notion of $\varphi$ solutions of linear problems (using the example of string oscillations)”, Proc. 10th Sarat. Winter Math. Sch. “Modern Problems of the Theory of Functions and Their Applications”, Izd. Sarat. Univ., Saratov, 2000, 94–95 (In Russian)

[9] Mokeichev V. S., “Boundary-value problems for partial differential equations”, Izv. Vyssh. Uchebn. Zaved., Mat., 1975, no. 4, 103–107 (In Russian)

[10] Mokeichev V. S., “On expansion into series by a given system of elements”, Issled. Prikl. Mat. Inf., 7, Kazan, 2011, 144–152 (In Russian)

[11] Mokeichev V. S., “A space with the only elements characterized by Fourier-series expansion by a given system of elements”, Evrraz. Nauchn. Ob'edinenie, 1:10 (2016), 24–31 (In Russian)