A dynamical process of several variables
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 762-770
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              In the space of $\varphi$-distributions with values belonging to a Banach space, the process described by the problem of partial differential equation has been considered. Conditions under which the process is dynamic have been given. The notion of $\varphi$-distributions and $\varphi$-solutions has been introduced by V.S. Mokeichev as a tool for studying the solvability of some partial differential equations and mathematical models. Thus, it is possible to solve certain problems without any generalized solution (Schwartz distribution). Furthermore, an opportunity to explain the theory of solvability without assumptions on the type of the investigated partial differential equation (elliptic, parabolic, hyperbolic) and on whether the equation is scalar. One of principal advantages of the space of $\varphi$-distributions is that its elements and only they expand in the series by a given system of elements $\varphi$.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
partial differential equation, $\varphi$-distribution, $\varphi$-solution.
                    
                  
                
                
                @article{UZKU_2018_160_4_a13,
     author = {V. S. Mokeichev and A. M. Sidorov},
     title = {A dynamical process of several variables},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {762--770},
     publisher = {mathdoc},
     volume = {160},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a13/}
}
                      
                      
                    TY - JOUR AU - V. S. Mokeichev AU - A. M. Sidorov TI - A dynamical process of several variables JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 762 EP - 770 VL - 160 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a13/ LA - ru ID - UZKU_2018_160_4_a13 ER -
%0 Journal Article %A V. S. Mokeichev %A A. M. Sidorov %T A dynamical process of several variables %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 762-770 %V 160 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a13/ %G ru %F UZKU_2018_160_4_a13
V. S. Mokeichev; A. M. Sidorov. A dynamical process of several variables. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 762-770. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a13/
