The Gakhov barriers and extremals for the level lines
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 750-761
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              The regular Gakhov class $\mathcal{G}_1$ consists of all holomorphic and locally univalent functions $f$ in the unit disk with only one root of the Gakhov equation, which is the maximum of the hyperbolic derivative (conformal radius) of the function $f$. For the classes $\mathcal{H}$ defined by the conditions of Nehari and Becker's type, as well as by some other inequalities, we have solved the problem of calculation of the Gakhov barrier, i.e., the value $\rho(\mathcal{H}) = \sup \{r\ge 0: \mathcal{H}_r\subset \mathcal{G}_1\}$, where $\mathcal{H}_r = \{f_r: f\in \mathcal{H}\}$, $0\le r\le 1$, and of an effective description of the Gakhov extremal, i.e., the set of $f$'s in $\mathcal{H}$ with the level sets $f_r$ leaving $\mathcal{G}_1$ when $r$ passes through $\rho(\mathcal{H})$. Both possible variants of bifurcation, which provide an exit out of $\mathcal{G}_1$ along the level lines, are represented.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Gakhov equation, Gakhov set, hyperbolic derivative, inner mapping (conformal) radius, Gakhov width, Gakhov barrier, Gakhov extremal.
                    
                  
                
                
                @article{UZKU_2018_160_4_a12,
     author = {A. V. Kazantsev},
     title = {The {Gakhov} barriers and extremals for the level lines},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {750--761},
     publisher = {mathdoc},
     volume = {160},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a12/}
}
                      
                      
                    TY - JOUR AU - A. V. Kazantsev TI - The Gakhov barriers and extremals for the level lines JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 750 EP - 761 VL - 160 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a12/ LA - ru ID - UZKU_2018_160_4_a12 ER -
A. V. Kazantsev. The Gakhov barriers and extremals for the level lines. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 750-761. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a12/
