Voir la notice du chapitre de livre
@article{UZKU_2018_160_4_a11,
author = {P. N. Ivanshin},
title = {A construction method for conformal mapping of the unit disk onto a {Riemann} surface},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {738--749},
year = {2018},
volume = {160},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a11/}
}
TY - JOUR AU - P. N. Ivanshin TI - A construction method for conformal mapping of the unit disk onto a Riemann surface JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 738 EP - 749 VL - 160 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a11/ LA - ru ID - UZKU_2018_160_4_a11 ER -
%0 Journal Article %A P. N. Ivanshin %T A construction method for conformal mapping of the unit disk onto a Riemann surface %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 738-749 %V 160 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a11/ %G ru %F UZKU_2018_160_4_a11
P. N. Ivanshin. A construction method for conformal mapping of the unit disk onto a Riemann surface. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 738-749. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a11/
[1] Conway J. B., Functions of One Complex Variable, Springer-Verlag, N. Y.–Berlin, 1978, xiv+322 pp. | DOI | MR
[2] Grassmann E., “Numerical experiments with a method of successive approximation for conformal mapping”, Z. Angew. Math. Phys., 30:6 (1979), 873–884 | DOI | MR | Zbl
[3] Porter R. M., “An accelerated osculation method and its application to numerical conformal mapping”, Complex Var. Theory Appl., 48:7 (2003), 569–582 | DOI | MR | Zbl
[4] Driscoll T. A., Trefethen L. N., Schwarz–Christoffel Mapping, Cambridge Univ. Press, Cambridge, 2002, xvi+132 pp. | DOI | MR | Zbl
[5] Driscoll T. A., Vavasis S. A., “Numerical conformal mapping using cross-ratios and Delaunay triangulation”, SIAM J. Sci. Comput., 19:6 (1998), 1783–1803 | DOI | MR | Zbl
[6] Symm G. T., “An integral equation method in conformal mapping”, Numer. Math., 9:3 (1966), 250–258 | DOI | MR | Zbl
[7] Henrici P., Applied and Computational Complex Analysis, v. 3, Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions, John Wiley Sons, N. Y., 1986, 637 pp. | MR | Zbl
[8] Fornberg B., “A numerical method for conformal mappings”, SIAM J. Sci. Stat. Comput., 1:3 (1980), 386–400 | DOI | MR | Zbl
[9] Wegman R., Murid A. H. M., Nasser M. M. S., “The Riemann–Hilbert problem and the generalized Neumann kernel”, J. Comput. Appl. Math., 182:2 (2005), 388–415 | DOI | MR | Zbl
[10] Wegman R., “An iterative methods for conformal mapping”, J. Comput. Appl. Math., 14:1–2 (1986), 7–18 | DOI | MR | Zbl
[11] Marshall D. E., Rohde S., “Convergence of a variant of the zipper algorithm for conformal mapping”, SIAM J. Numer. Anal., 45:6 (2007), 2577–2609 | DOI | MR | Zbl
[12] Shirokova E. A., “On approximate conformal mapping of the unit disk on an simply connected domain”, Russ. Math., 58:3 (2014), 47–56 | DOI | MR | Zbl
[13] Shirokova E. A., Ivanshin P. N., “Approximate conformal mappings and elasticity theory”, J. Complex Anal., 2016 (2016), 4367205, 1–8 | DOI | MR
[14] Abzalilov D. F., Shirokova E. A., “The approximate conformal mapping onto simply and doubly connected domains”, Complex Var. Elliptic Equations, 62:4 (2017), 554–565 | DOI | MR | Zbl
[15] Abzalilov D. F., Shirokova E. A., “The approximate conformal mapping onto multiply connected domains”, Probl. Anal. Issues Anal., 8:1 (2019), 3–16 | DOI | MR
[16] DeLillo Th. K., Elcrat A. R., “A Fornberg-like conformal mapping method for slender regions”, J. Comput. Appl. Math., 46:1–2 (1993), 49–64 | DOI | MR | Zbl
[17] Warschawski S. E., “On conformal mapping of variable regions”, Nat. Bur. Stand. Appl. Math. Ser., 18 (1952), 175–187 | MR
[18] Li B. C., Syngellakis S., “Numerical conformal mapping based on the generalised conjugation operator”, Math. Comput., 67:222 (1998), 619–639 | DOI | MR | Zbl
[19] Hough D. M., Papamichael N., “An integral equation method for the numerical conformal mapping of interior, exterior and doubly-connected domains”, Numer. Math., 41:3 (1983), 287–307 | DOI | MR | Zbl
[20] Kress R., “Inverse problem and conformal mapping”, Complex Var. Elliptic Equations, 57:2–4 (2012), 301–316 | DOI | MR | Zbl
[21] Gakhov F. D., Boundary Value Problems, Pergamon, 1966, 584 pp. | MR | Zbl
[22] Tricomi F. G., Integral equations, Dover Publ. Inc., N. Y., 1985, 256 pp. | MR