Computable embedding of classes of algebraic structures with congruence relation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 731-737 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It has been shown in the paper that there is an intermediate notion of embedding, which is based on the use of non-injective presentations of algebraic structures, between the computable embedding of classes of algebraic structures based on the enumeration operators and the Turing computable embedding. The problem of equivalence of this notion to the injective computable embedding is related to the problem of effective factorization by enumeration operators.
Keywords: enumeration operator, Turing operator, atomic diagram.
Mots-clés : algebraic structure
@article{UZKU_2018_160_4_a10,
     author = {S. Vatev and H. Ganchev and I. Sh. Kalimullin},
     title = {Computable embedding of classes of algebraic structures with congruence relation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {731--737},
     year = {2018},
     volume = {160},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a10/}
}
TY  - JOUR
AU  - S. Vatev
AU  - H. Ganchev
AU  - I. Sh. Kalimullin
TI  - Computable embedding of classes of algebraic structures with congruence relation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 731
EP  - 737
VL  - 160
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a10/
LA  - ru
ID  - UZKU_2018_160_4_a10
ER  - 
%0 Journal Article
%A S. Vatev
%A H. Ganchev
%A I. Sh. Kalimullin
%T Computable embedding of classes of algebraic structures with congruence relation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 731-737
%V 160
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a10/
%G ru
%F UZKU_2018_160_4_a10
S. Vatev; H. Ganchev; I. Sh. Kalimullin. Computable embedding of classes of algebraic structures with congruence relation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 4, pp. 731-737. http://geodesic.mathdoc.fr/item/UZKU_2018_160_4_a10/

[1] Calvert W., Cummins D., Knight J. F., Miller S., “Comparing classes of finite structures”, Algebra Logic, 43:6 (2004), 374–392 | DOI | MR | Zbl

[2] Knight J. F., Miller S., Boom M. V., “Turing computable embeddings”, J. Symb. Logic, 72:3 (2007), 901–918 | DOI | MR | Zbl

[3] Rossegger D., “On functors enumerating structures”, Sib. Elektron. Mat. Izv., 14 (2017), 690–702 | DOI | MR | Zbl

[4] Ocasio-Gonzalez V. A., “Turing computable embeddings and coding families of sets”, How the World Computes, CiE 2012, Lecture Notes in Computer Science, 7318, eds. Cooper S. B., Dawar A., Lowe B., Springer, Berlin–Heidelberg, 2012, 539–548 | DOI | MR | Zbl

[5] Andrews U., Dushenin D. I., Hill C., Knight J. F., Melnikov A. G., “Comparing classes of finite sums”, Algebra Logic, 54:6 (2016), 489–501 | DOI | DOI | MR | Zbl

[6] Bazhenov N., “Turing computable embeddings, computable infinitary equivalence, and linear orders”, Unveiling Dynamics and Complexity, CiE 2017, Lecture Notes in Computer Science, 10307, eds. Kari J., Manea F., Petre I., Springer, Cham, 2017, 141–151 | DOI | MR | Zbl

[7] Kalimullin I. Sh., “Computable embeddings of classes of structures under enumeration and turing operators”, Lobachevskii J. Math., 39:1 (2018), 84–88 | DOI | MR | Zbl