Mots-clés : triangulation
@article{UZKU_2018_160_3_a9,
author = {I. R. Kadyrov and S. P. Kopysov and A. K. Novikov},
title = {Partitioning of triangulated multiply connected domain into subdomains without branching of inner boundaries},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {544--560},
year = {2018},
volume = {160},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a9/}
}
TY - JOUR AU - I. R. Kadyrov AU - S. P. Kopysov AU - A. K. Novikov TI - Partitioning of triangulated multiply connected domain into subdomains without branching of inner boundaries JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 544 EP - 560 VL - 160 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a9/ LA - ru ID - UZKU_2018_160_3_a9 ER -
%0 Journal Article %A I. R. Kadyrov %A S. P. Kopysov %A A. K. Novikov %T Partitioning of triangulated multiply connected domain into subdomains without branching of inner boundaries %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 544-560 %V 160 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a9/ %G ru %F UZKU_2018_160_3_a9
I. R. Kadyrov; S. P. Kopysov; A. K. Novikov. Partitioning of triangulated multiply connected domain into subdomains without branching of inner boundaries. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 544-560. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a9/
[1] Korneev V., Langer U., “Domain decomposition methods and preconditioning”, Encyclopedia of Computational Mechanics, Wiley-Blackwell, 2004, 617–647
[2] Kopysov S. P., Kuzmin I. M., Nedozhogin N. S., Novikov A. K., “Parallel algorithms for constructing and solving the Schur complement on graphics accelerators”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 3 (2012), 202–215 (In Russian) | MR | Zbl
[3] Martynenko S. I., “Formalization of computations at numerical solution of boundary value problems”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 150, no. 1 (2008), 76–90 (In Russian) | Zbl
[4] Lei Y., Baojun L., Zhangquan L., Wenbin H., Ping H., “Finite element mesh deformation with the skeleton-section template”, Comput.-Aided Des., 43 (2016), 11–25 | DOI
[5] Kopysov S. P., Kuzmin I. M., Novikov A. K., Nedozhogin N. S., Tonkov L. E., “Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 51 (2018), 42–50 | DOI | MR
[6] Kopysov S. P., Novikov A. K., “Parallel algorithms of adaptive refinement and partitioning of unstructured grids”, Mat. Model., 14:9 (2002), 91–96 (In Russian)
[7] Yakobovskii M. V., “An incremental algorithm for graph decomposition”, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo. Ser. Mat. Model. Optim. Upr., 2005, no. 1, 243–250 (In Russian)
[8] Karypis G., Kumar V., “Multilevel k-way partitioning scheme for irregular graphs”, J. Parallel Distrib. Comput., 48 (1998), 96–129 | DOI | MR
[9] Novikov A. K., Kopysov S. P., Piminova N. K., “Layer-by-layer partitioning of finite-element meshes for multi-core architectures”, Russian Supercomputing Days, Proc. Int. Conf., Izd. Mosk. Univ., M., 2016, 493–504 (In Russian)
[10] Au O.K.-C., Tai C.-L., Chu H.-K., Cohen-Or D., Lee T.-Y., “Skeleton extraction by mesh contraction”, ACM Trans. Graph., 27:3 (2008), 44, 10 pp.
[11] Mestetskiy L. M., Continuous Morphology of Binary Images: Figures, Skeletons, and Circulars, Fizmatlit, M., 2009, 288 pp. (In Russian)
[12] Zimovnov A. V., Mestetskiy L. M., “On algorithm of curve-skeleton extraction for 3D model based on planar projections”, Vestn. TvGU Ser.: Prikl. Mat., 2016, no. 3, 67–83 (In Russian)
[13] Ivanov A. O., Tuzhilin A. A., Fomenko A. T., “Computer modeling of curves and surfaces”, J. Math. Sci., 172:5 (2011), 663–689 | DOI | MR | Zbl
[14] Berretti S., Bimbo A. D., Pala P., “3D Mesh decomposition using Reeb graphs”, Image Vision Comput., 27:10 (2009), 1540– 1554 | DOI
[15] Postnikov M. M., Introduction to Morse Theory, Nauka, M., 1971, 568 pp. (In Russian)
[16] Hajij M., Dey T., Li Kh., “Segmenting a surface mesh into pants using Morse theory”, Graphical Models, 88 (2016), 12–21 | DOI | MR
[17] Lupescu A., “Note on an algorithm for computing the Reeb graph”, Int. J. Geom., 6:1 (2017), 89–94 | MR | Zbl
[18] Aho A. V., Hopcroft J. E., Ullman J. D., The Design and Analysis of Computer Algorithms, Addison-Wesley Publ. Comp., London–Amsterdam–Don Mills–Sydney, 1974, x+470 pp. | MR | MR | Zbl
[19] Harvey W., Wang Y., Wenger R., “A Randomized $O(m \log m)$ time algorithm for computing Reeb graphs of arbitrary simplicial complexes”, Proc. Twenty-sixth Annual Symposium on Computational Geometry (SoCG '10), ACM, N. Y., 2010, 267–276 | MR | Zbl