Keywords: Kirchhoff–Love shell, stationary boundary value problem, eigenfunction, Green's function.
@article{UZKU_2018_160_3_a8,
author = {A. V. Ivanilov and D. V. Tarlakovskii},
title = {Dynamics of a console cylindrical panel},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {528--543},
year = {2018},
volume = {160},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a8/}
}
TY - JOUR AU - A. V. Ivanilov AU - D. V. Tarlakovskii TI - Dynamics of a console cylindrical panel JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 528 EP - 543 VL - 160 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a8/ LA - ru ID - UZKU_2018_160_3_a8 ER -
A. V. Ivanilov; D. V. Tarlakovskii. Dynamics of a console cylindrical panel. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 528-543. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a8/
[1] Strutt J. W., Theory of Sound, Gostehteorizdat, M., 1955 (In Russian)
[2] Lyamshev L. M., Reflection of Sound by Thin Plates and Shells in Liquid, Izd. Akad. Nauk SSSR, M., 1955, 73 pp. (In Russian)
[3] Gurovich Yu. A., “On the sound insulation of a rectangular plate at low frequencies”, Akust. Zh., 24:4 (1978), 508–515 (In Russian)
[4] Igumnov L. A., Lokteva N. A., Paimushin V. N., Tarlakovskii D. V., “Soundproof properties of a one-dimensional three-layer plate”, J. Math. Sci., 203:1 (2014), 104–113 | DOI | MR | Zbl
[5] Paimushin V. N., Tarlakovskii D. V., Gazizullin R. K., Lukashevich A., “Investigation of different versions of formulation of the problem of soundproofing of rectangular plates surrounded with acoustic media”, J. Math. Sci., 220:1 (2017), 59–81 | DOI | MR | MR | Zbl
[6] Lokteva N. A., Serdyuk D. O., Tarlakovskii D. V., “Influence of incident wave shape on sound-insulating properties of a rectangular plate with complex structure”, Tr. MAI, 2015, no. 82 (In Russian)
[7] Lokteva N. A., Serdyuk D. O., Tarlakovskii D. V., “Investigation of soundproof properties of a three-layer plate”, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2016, no. 1, 167–171 (In Russian)
[8] Lokteva N. A., Paimushin V. N., Serdyuk D. O., Tarlakovskii D. V., “The interaction between the plane wave and the plate with limited height in soil”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 1, 2017, 64–74 (In Russian)
[9] Vlasov V. Z., General Theory of Shells, Gostekhizdat, M., 1949, 784 pp. (In Russian)
[10] Novozhilov V. V., Chernykh K. F., Mikhailovsky E. I., Linear Theory of Thin Shells, Politekhnika, L., 1991, 656 pp. (In Russian)
[11] Timoshenko S. P., Voinovsky-Krieger S., Plates and Shells, Nauka, M., 1966, 635 pp. (In Russian)
[12] Ogibalov P. M., Koltunov M. A., Shells and Plates, Izd. Mosk. Univ., M., 1969, 695 pp. (In Russian)
[13] Volmir A. S., Shells in Fluid and Gas Flow (Aeroelasticity Problems), Nauka, M., 1976, 416 pp. (In Russian)
[14] Galimov K. Z., Paimushin V. N., Teregulov I. G., Foundations of the Nonlinear Theory of Shells, Fen, Kazan, 1996, 216 pp. (In Russian)
[15] Gorshkov A. G., Medvedskii A. L., Rabinskii L. N., Tarlakovskii D. V., Waves in Continuous Media, Fizmatlit, M., 2004, 472 pp. (In Russian)
[16] Gorshkov A. G., Tarlakovskii D. V. (eds.), Collection of Problems on Resistance of Materials with Theory and Examples, Fizmatlit, M., 2003, 632 pp. (In Russian)
[17] Tarlakovskii D. V., Fedotenkov G. V., General Relations and Variational Principles of the Mathematical Theory of Elasticity, Izd. MAI-PRINT, M., 2009, 112 pp. (In Russian)