Dynamics of a console cylindrical panel
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 528-543 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A one-dimensional stationary problem of the dynamics of a console circular panel with applied normal pressure has been discussed. The boundary value problem has been considered for various shells, such as the Kirchhoff–Love shell and the Donnel–Mushtari shell with extensible and non-extensible middle plane. The possibility of finding an analytical solution for the above-said shells has been considered as well. The solution of the problem has been sought in the form of using integral expressions with Green's functions as their core. Green's functions would be the boundary value problem's solution with pressure in a form of Dirac delta function. An analytical algorithm has been developed to calculate Green's functions value for any fluctuation frequency. This algorithm is based on the numerical (in case of the Kirchhoff–Love shell and the Donnel–Mushtari shell with extensible middle plane) and precise (in any other cases) solution of the characteristic equation and also on developing a common solution in a matrix form for the boundary value problem. Examples of the calculations of dynamics of a console circular panel with applied concentrated force (Green's function) and normal pressure have been given. Comparison of various shells with the applied concentrated and distributed loads has been performed.
Mots-clés : console circular panel, Donnel–Mushtari shell
Keywords: Kirchhoff–Love shell, stationary boundary value problem, eigenfunction, Green's function.
@article{UZKU_2018_160_3_a8,
     author = {A. V. Ivanilov and D. V. Tarlakovskii},
     title = {Dynamics of a console cylindrical panel},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {528--543},
     year = {2018},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a8/}
}
TY  - JOUR
AU  - A. V. Ivanilov
AU  - D. V. Tarlakovskii
TI  - Dynamics of a console cylindrical panel
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 528
EP  - 543
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a8/
LA  - ru
ID  - UZKU_2018_160_3_a8
ER  - 
%0 Journal Article
%A A. V. Ivanilov
%A D. V. Tarlakovskii
%T Dynamics of a console cylindrical panel
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 528-543
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a8/
%G ru
%F UZKU_2018_160_3_a8
A. V. Ivanilov; D. V. Tarlakovskii. Dynamics of a console cylindrical panel. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 528-543. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a8/

[1] Strutt J. W., Theory of Sound, Gostehteorizdat, M., 1955 (In Russian)

[2] Lyamshev L. M., Reflection of Sound by Thin Plates and Shells in Liquid, Izd. Akad. Nauk SSSR, M., 1955, 73 pp. (In Russian)

[3] Gurovich Yu. A., “On the sound insulation of a rectangular plate at low frequencies”, Akust. Zh., 24:4 (1978), 508–515 (In Russian)

[4] Igumnov L. A., Lokteva N. A., Paimushin V. N., Tarlakovskii D. V., “Soundproof properties of a one-dimensional three-layer plate”, J. Math. Sci., 203:1 (2014), 104–113 | DOI | MR | Zbl

[5] Paimushin V. N., Tarlakovskii D. V., Gazizullin R. K., Lukashevich A., “Investigation of different versions of formulation of the problem of soundproofing of rectangular plates surrounded with acoustic media”, J. Math. Sci., 220:1 (2017), 59–81 | DOI | MR | MR | Zbl

[6] Lokteva N. A., Serdyuk D. O., Tarlakovskii D. V., “Influence of incident wave shape on sound-insulating properties of a rectangular plate with complex structure”, Tr. MAI, 2015, no. 82 (In Russian)

[7] Lokteva N. A., Serdyuk D. O., Tarlakovskii D. V., “Investigation of soundproof properties of a three-layer plate”, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2016, no. 1, 167–171 (In Russian)

[8] Lokteva N. A., Paimushin V. N., Serdyuk D. O., Tarlakovskii D. V., “The interaction between the plane wave and the plate with limited height in soil”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 1, 2017, 64–74 (In Russian)

[9] Vlasov V. Z., General Theory of Shells, Gostekhizdat, M., 1949, 784 pp. (In Russian)

[10] Novozhilov V. V., Chernykh K. F., Mikhailovsky E. I., Linear Theory of Thin Shells, Politekhnika, L., 1991, 656 pp. (In Russian)

[11] Timoshenko S. P., Voinovsky-Krieger S., Plates and Shells, Nauka, M., 1966, 635 pp. (In Russian)

[12] Ogibalov P. M., Koltunov M. A., Shells and Plates, Izd. Mosk. Univ., M., 1969, 695 pp. (In Russian)

[13] Volmir A. S., Shells in Fluid and Gas Flow (Aeroelasticity Problems), Nauka, M., 1976, 416 pp. (In Russian)

[14] Galimov K. Z., Paimushin V. N., Teregulov I. G., Foundations of the Nonlinear Theory of Shells, Fen, Kazan, 1996, 216 pp. (In Russian)

[15] Gorshkov A. G., Medvedskii A. L., Rabinskii L. N., Tarlakovskii D. V., Waves in Continuous Media, Fizmatlit, M., 2004, 472 pp. (In Russian)

[16] Gorshkov A. G., Tarlakovskii D. V. (eds.), Collection of Problems on Resistance of Materials with Theory and Examples, Fizmatlit, M., 2003, 632 pp. (In Russian)

[17] Tarlakovskii D. V., Fedotenkov G. V., General Relations and Variational Principles of the Mathematical Theory of Elasticity, Izd. MAI-PRINT, M., 2009, 112 pp. (In Russian)