On numerical methods for time-dependent eddy current problems for the Maxwell equations in inhomogeneous media
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 477-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

E-based and H-based formulations for time-dependent eddy current problems for the Maxwell equations in inhomogeneous media have been derived. The concept of generalized solutions for boundary-value problems in bounded regions for obtained systems of equations has been formulated. Conditions for the existence and uniqueness of the generalized solutions have been established. Axisymmetric problems have been thoroughly considered, and a class of test problems has been proposed. Their exact solutions have the same key features as the solutions of the original problems. Numerical methods based on finite element approximations of the three-dimensional operators have been constructed. Particular attention has been paid to the methods on tetrahedral elements. Linear Lagrange elements, zero-order and first-order Nédélec elements have been used. The computational efficiency of the proposed finite element approximations has been analyzed by solving the constructed test problems. For small gaps in the coefficients of equations and regular finite element meshes, the first-order Nédélec elements have certain advantages in terms of accuracy and computational costs.
Keywords: Maxwell equations, eddy current approximation, finite element method, test problems.
@article{UZKU_2018_160_3_a4,
     author = {A. A. Arbuzov and R. Z. Dautov and E. M. Karchevskii and M. M. Karchevskii and D. V. Chistyakov},
     title = {On numerical methods for time-dependent eddy current problems for the {Maxwell} equations in inhomogeneous media},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {477--494},
     year = {2018},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a4/}
}
TY  - JOUR
AU  - A. A. Arbuzov
AU  - R. Z. Dautov
AU  - E. M. Karchevskii
AU  - M. M. Karchevskii
AU  - D. V. Chistyakov
TI  - On numerical methods for time-dependent eddy current problems for the Maxwell equations in inhomogeneous media
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 477
EP  - 494
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a4/
LA  - ru
ID  - UZKU_2018_160_3_a4
ER  - 
%0 Journal Article
%A A. A. Arbuzov
%A R. Z. Dautov
%A E. M. Karchevskii
%A M. M. Karchevskii
%A D. V. Chistyakov
%T On numerical methods for time-dependent eddy current problems for the Maxwell equations in inhomogeneous media
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 477-494
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a4/
%G ru
%F UZKU_2018_160_3_a4
A. A. Arbuzov; R. Z. Dautov; E. M. Karchevskii; M. M. Karchevskii; D. V. Chistyakov. On numerical methods for time-dependent eddy current problems for the Maxwell equations in inhomogeneous media. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 477-494. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a4/

[1] Landau L. D., Pitaevskii L. P., Lifshitz E. M., Electrodynamics of Continuous Media, Butterworth-Heinemann, 1984, 460 pp.

[2] Duvant G., Lions J. L., Inequalities in Mechanics and Physics, Springer-Verlag, Berlin–Heidelberg, 1976, xvi+400 pp. | DOI | MR

[3] Tamm I. E., Fundamentals of The Theory of Electricity, Mir, M., 1979, 684 pp. (In Russian)

[4] Galanin M. P., Popov Yu. P., Quasi-Stationary Electromagnetic Fields in Inhomogeneous Media, Nauka. Fizmatlit, M., 1995, 315 pp. (In Russian)

[5] Acevedo R., Meddahi S., Rodriguez R., “An E-based mixed formulation for a time-dependent eddy current problem”, Math. Comput., 78:268 (2009), 1929–1949 | DOI | MR | Zbl

[6] Kalinin A. V., Morozov S. F., “The Maxwell equations system in the quasi-stationary magnetic approximation”, Vestn. Nizhegorod. Gos. Univ. Ser. Mat. Model. Optim. Upr., 2001, no. 1, 97–106 (In Russian)

[7] Rapettia R., Rousseaux B., “On quasi-static models hidden in Maxwell's equations”, Appl. Numer. Math., 79 (2014), 92–106 | DOI | MR

[8] Ladyzhenskaya O. A., The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | Zbl

[9] Mikhlin S. G., Linear Partial Differential Equations, Vyssh. Shk., M., 1977, 423 pp. (In Russian)

[10] Karchevskii M. M., Pavlova M. F., Equations of Mathematical Physics. Additional Chapters, Lan', St. Petersburg, 2016, 276 pp. (In Russian)

[11] Kalinin A. V., Mathematical Problems of Physical Diagnostics. The Correctness of the Problems of the Electromagnetic Theory in the Stationary and Quasi-Stationary Approximations, Izd. Nizhegorod. Univ., Nizhny Novgorod, 2007, 121 pp. (In Russian)

[12] Gaevsky H., Greger K., Zakharias K., Nonlinear Operator Equations and Operator Differential Equations, Mir, M., 1978, 336 pp. (In Russian)

[13] Zeidler E., Nonlinear Functional Analysis and its Applications. II/A: Linear monotone operators, Springer-Verlag, N. Y., 1990, xviii+467 pp. | DOI | MR | Zbl

[14] Ciarlet P. G., The Finite Element Method for Elliptic Problems, SIAM,, 2002, xxiii+529 pp. | DOI | MR

[15] Nédélec J. C., “A new family of mixed finite elements in $R^3$”, Numer. Math., 50:1 (1986), 57–81 | DOI | MR

[16] Rodriguez A. A., Valli A., Eddy Current Approximation of Maxwell Equations. Theory, Algorithms and Applications, Springer-Verlag, 2010, xiii+347 pp. | DOI | MR | Zbl