Mots-clés : equations of motion
@article{UZKU_2018_160_3_a10,
author = {E. Yu. Mihajlova and D. V. Tarlakovskii and G. V. Fedotenkov},
title = {A generalized linear model of dynamics of thin elastic shells},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {561--577},
year = {2018},
volume = {160},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a10/}
}
TY - JOUR AU - E. Yu. Mihajlova AU - D. V. Tarlakovskii AU - G. V. Fedotenkov TI - A generalized linear model of dynamics of thin elastic shells JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 561 EP - 577 VL - 160 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a10/ LA - ru ID - UZKU_2018_160_3_a10 ER -
%0 Journal Article %A E. Yu. Mihajlova %A D. V. Tarlakovskii %A G. V. Fedotenkov %T A generalized linear model of dynamics of thin elastic shells %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 561-577 %V 160 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a10/ %G ru %F UZKU_2018_160_3_a10
E. Yu. Mihajlova; D. V. Tarlakovskii; G. V. Fedotenkov. A generalized linear model of dynamics of thin elastic shells. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 561-577. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a10/
[1] Grigolyuk E. I., Selezov I. T., Nonclassical theories of vibrations of bars, plates, and shells, Itogi Nauki Tekh., Ser.: Mekh. Deform. Tverd. Tel, 5, 1973, 273 pp. (In Russian)
[2] Novozhilov V. V., Chernych K. F., Michailovskii E. I., Linear Theory of Thin Shells, Politekhnika, L., 1991, 656 pp. (In Russian)
[3] Tovstik P. E., “On the non-classic models of beams, plates, and shells”, Izv. Sarat. Univ. Nov. Ser. Mat. Mekh. Inf., 8:3 (2008), 72–85 (In Russian)
[4] Starovoitov E. I., Kubenko V. D., Tarlakovskii D. V., “Vibrations of circular sandwich plates connected with an elastic foundation”, Russ. Aeronaut., 52:2 (1990), 151–157 | DOI | MR
[5] Starovoitov E. I., Leonenko D. V., Tarlakovsky D. V., “Resonance Vibrations of a Circular Composite Plates on an Elastic Foundation”, Mech. Compos. Mater., 51:5 (2015), 561–570 | DOI
[6] Paimushin V. N., Gazizullin R. K., Fedotenkov G. V., “Acoustic impact on the laminated plates placed between barriers”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 012075 | DOI
[7] Tarlakovskii D. V., Fedotenkov G. V., “Two-dimensional nonstationary contact of elastic cylindrical or spherical shells”, J. Mach. Manuf. Reliab., 43:2 (2014), 145–152 | DOI
[8] Mikhailova E. Yu., Fedotenkov G. V., “Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction)”, Mech. Solids, 46:2 (2011), 239–247 | DOI
[9] Tarlakovskii D. V., Fedotenkov G. V., “Nonstationary 3D motion of an elastic spherical shell”, Mech. Solids, 50:2 (2015), 208–217 | DOI
[10] Miller R. E., Shenoy V. B., “Size-dependent elastic properties of nanosized structural elements”, Nanotechnology, 2000, no. 11, 139–147 | DOI
[11] Reissner E., “On the form of variationally derived shell equations”, J. Appl. Mech., 31:2 (1964), 233–328 | DOI | MR
[12] Ambartsumyan S. A., General Theory of Anisotropic Shells, Nauka, M., 1974, 448 pp. (In Russian)
[13] Ambartsumyan S. A., “To the calculation of two-layer orthotropic shells”, Izv. Akad. Nauk SSSR OTN, 1957, no. 7, 57–64 (In Russian)
[14] Pelekh B. L., Theory of Shells with Finite Shear Rigidity, Naukova Dumka, Kiev, 1973, 248 pp. (In Russian)
[15] Pietraszkiewicz W., “The resultant linear six-field theory of elastic shells: What it brings to the classical linear shell models”, ZAMM, 96:8 (2016), 899–915 | DOI | MR
[16] Pietraszkiewicz W., Valle'e C., “A method of shell theory in determination of the surface from components of its two fundamental forms”, ZAMM, 87:8–9 (2007), 603–615 | DOI | MR | Zbl
[17] Rodionova V. A., Titaev B. F., Chernykh K. F., Applied Theory of Anisotropic Plates and Shells, Izd. S.-Peterb. Univ., St. Petersburg, 1996, 280 pp. (In Russian)
[18] Paliy O. M., Spiro V. E., Anisotropic Shells in Shipbuildings. Theory and Analysis, Sudostroenie, L., 1977, 386 pp. (In Russian)
[19] Galimov K. Z., Paimushin V. N., Teregulov I. G., Foundations of the Nonlinear Theory of Shells, Fen, Kazan, 1996, 215 pp. (In Russian)
[20] Paimushin V. N., “A version of the Timoshenko-type nonlinear theory of thin shells”, Prikl. Mekh., 22:8 (1986), 50–57 (In Russian) | Zbl
[21] Paimushin V. N., “A study of elasticity and plasticity equations under arbitrary displacements and strains”, Mech. Solids, 46:2 (2011), 213–224 | DOI
[22] Paimushin V. N., “Relationships of the Timoshenko-type theory of thin shells with arbitrary displacements and strains”, J. Appl. Mech. Techn. Phys., 55:5 (2014), 843–856 | DOI | MR | Zbl
[23] Novozhilov V. V., Theory of Thin Shells, Sudpromgiz, L., 1952, 431 pp. (In Russian)
[24] Gorshkov A. G., Rabinsky L. N., Tarlakovsky D. V., Fundamentals of Tensor Analysis and Continuum Mechanics, Nauka, M., 2000, 214 pp. (In Russian)
[25] Poznyak E. G., Shikin E. V., Differential Geometry. First Acquaintance, Izd. Mosk. Univ., M., 1990, 384 pp. (In Russian)
[26] Amenzade Yu. A., Theory of Elasticity, Vyssh. Shk., M., 1976, 272 pp. (In Russian)
[27] Gorshkov A. G., Medvedsky A. L., Rabinsky L. N., Tarlakovsky D. V., Waves in Continuous Media, Fizmatlit, M., 2004, 472 pp. (In Russian)
[28] Gelfand I. M., Fomin S. V., Calculus of Variations, Prentice-Hall Inc., Englewood Cliffs, N.J., 1963, 232 pp. | MR | MR