A generalized linear model of dynamics of thin elastic shells
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 561-577 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A generalized linear model of the dynamics of a thin elastic shell of constant thickness, which takes into account the rotation and compression of the fiber sheath normal to the middle surface, has been proposed. A coordinate system has been used that includes the curvilinear coordinates of the median surface and the distance (normal coordinate) measured from the median surface in the direction of the outer normal. The connections of spatial metrics and covariant derivatives with analogous parameters of the middle surface have been found. The field of displacements of the shell and all the characteristics have been considered in the linear approximation in the normal coordinate. It has been shown that the movements of any point of the shell are determined by the tangential and normal displacements of the middle surface, by two angles of rotation of the normal fiber and its deformation, and the deformed state of the envelope is specified by the tensors of tangential deformation and changes in curvature and deformation of the normal fiber. By means of the linearization of the equations of compatibility of deformations for a continuous medium, three analogous equations for a thin shell have been obtained. To prove their validity, the quadratic approximation of displacements has been used. Formulas for the potential and kinetic energy have been obtained, as well as for the operation of external forces. It has been shown that taking into account the rotation of the normal fiber and compression leads to the appearance of additional internal force factors - an additional moment and normal force. In this case, distributed moments are added to standard external force factors. The physical law has been constructed for an anisotropic material that has symmetry relative to the median surface without adopting the commonly used static hypothesis of non-adherence of fibers. The equations of motion have been constructed using the Hamiltonian principle. They consist of six tensor relations. From this principle, natural boundary conditions have been derived. It has been shown that the Kirchhoff–Love model and Tymoshenko type follow from the constructed model as special cases.
Keywords: elastic shell, rotation and compression of a normal fiber, anisotropy, compatibility of deformations.
Mots-clés : equations of motion
@article{UZKU_2018_160_3_a10,
     author = {E. Yu. Mihajlova and D. V. Tarlakovskii and G. V. Fedotenkov},
     title = {A generalized linear model of dynamics of thin elastic shells},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {561--577},
     year = {2018},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a10/}
}
TY  - JOUR
AU  - E. Yu. Mihajlova
AU  - D. V. Tarlakovskii
AU  - G. V. Fedotenkov
TI  - A generalized linear model of dynamics of thin elastic shells
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 561
EP  - 577
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a10/
LA  - ru
ID  - UZKU_2018_160_3_a10
ER  - 
%0 Journal Article
%A E. Yu. Mihajlova
%A D. V. Tarlakovskii
%A G. V. Fedotenkov
%T A generalized linear model of dynamics of thin elastic shells
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 561-577
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a10/
%G ru
%F UZKU_2018_160_3_a10
E. Yu. Mihajlova; D. V. Tarlakovskii; G. V. Fedotenkov. A generalized linear model of dynamics of thin elastic shells. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 561-577. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a10/

[1] Grigolyuk E. I., Selezov I. T., Nonclassical theories of vibrations of bars, plates, and shells, Itogi Nauki Tekh., Ser.: Mekh. Deform. Tverd. Tel, 5, 1973, 273 pp. (In Russian)

[2] Novozhilov V. V., Chernych K. F., Michailovskii E. I., Linear Theory of Thin Shells, Politekhnika, L., 1991, 656 pp. (In Russian)

[3] Tovstik P. E., “On the non-classic models of beams, plates, and shells”, Izv. Sarat. Univ. Nov. Ser. Mat. Mekh. Inf., 8:3 (2008), 72–85 (In Russian)

[4] Starovoitov E. I., Kubenko V. D., Tarlakovskii D. V., “Vibrations of circular sandwich plates connected with an elastic foundation”, Russ. Aeronaut., 52:2 (1990), 151–157 | DOI | MR

[5] Starovoitov E. I., Leonenko D. V., Tarlakovsky D. V., “Resonance Vibrations of a Circular Composite Plates on an Elastic Foundation”, Mech. Compos. Mater., 51:5 (2015), 561–570 | DOI

[6] Paimushin V. N., Gazizullin R. K., Fedotenkov G. V., “Acoustic impact on the laminated plates placed between barriers”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), 012075 | DOI

[7] Tarlakovskii D. V., Fedotenkov G. V., “Two-dimensional nonstationary contact of elastic cylindrical or spherical shells”, J. Mach. Manuf. Reliab., 43:2 (2014), 145–152 | DOI

[8] Mikhailova E. Yu., Fedotenkov G. V., “Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction)”, Mech. Solids, 46:2 (2011), 239–247 | DOI

[9] Tarlakovskii D. V., Fedotenkov G. V., “Nonstationary 3D motion of an elastic spherical shell”, Mech. Solids, 50:2 (2015), 208–217 | DOI

[10] Miller R. E., Shenoy V. B., “Size-dependent elastic properties of nanosized structural elements”, Nanotechnology, 2000, no. 11, 139–147 | DOI

[11] Reissner E., “On the form of variationally derived shell equations”, J. Appl. Mech., 31:2 (1964), 233–328 | DOI | MR

[12] Ambartsumyan S. A., General Theory of Anisotropic Shells, Nauka, M., 1974, 448 pp. (In Russian)

[13] Ambartsumyan S. A., “To the calculation of two-layer orthotropic shells”, Izv. Akad. Nauk SSSR OTN, 1957, no. 7, 57–64 (In Russian)

[14] Pelekh B. L., Theory of Shells with Finite Shear Rigidity, Naukova Dumka, Kiev, 1973, 248 pp. (In Russian)

[15] Pietraszkiewicz W., “The resultant linear six-field theory of elastic shells: What it brings to the classical linear shell models”, ZAMM, 96:8 (2016), 899–915 | DOI | MR

[16] Pietraszkiewicz W., Valle'e C., “A method of shell theory in determination of the surface from components of its two fundamental forms”, ZAMM, 87:8–9 (2007), 603–615 | DOI | MR | Zbl

[17] Rodionova V. A., Titaev B. F., Chernykh K. F., Applied Theory of Anisotropic Plates and Shells, Izd. S.-Peterb. Univ., St. Petersburg, 1996, 280 pp. (In Russian)

[18] Paliy O. M., Spiro V. E., Anisotropic Shells in Shipbuildings. Theory and Analysis, Sudostroenie, L., 1977, 386 pp. (In Russian)

[19] Galimov K. Z., Paimushin V. N., Teregulov I. G., Foundations of the Nonlinear Theory of Shells, Fen, Kazan, 1996, 215 pp. (In Russian)

[20] Paimushin V. N., “A version of the Timoshenko-type nonlinear theory of thin shells”, Prikl. Mekh., 22:8 (1986), 50–57 (In Russian) | Zbl

[21] Paimushin V. N., “A study of elasticity and plasticity equations under arbitrary displacements and strains”, Mech. Solids, 46:2 (2011), 213–224 | DOI

[22] Paimushin V. N., “Relationships of the Timoshenko-type theory of thin shells with arbitrary displacements and strains”, J. Appl. Mech. Techn. Phys., 55:5 (2014), 843–856 | DOI | MR | Zbl

[23] Novozhilov V. V., Theory of Thin Shells, Sudpromgiz, L., 1952, 431 pp. (In Russian)

[24] Gorshkov A. G., Rabinsky L. N., Tarlakovsky D. V., Fundamentals of Tensor Analysis and Continuum Mechanics, Nauka, M., 2000, 214 pp. (In Russian)

[25] Poznyak E. G., Shikin E. V., Differential Geometry. First Acquaintance, Izd. Mosk. Univ., M., 1990, 384 pp. (In Russian)

[26] Amenzade Yu. A., Theory of Elasticity, Vyssh. Shk., M., 1976, 272 pp. (In Russian)

[27] Gorshkov A. G., Medvedsky A. L., Rabinsky L. N., Tarlakovsky D. V., Waves in Continuous Media, Fizmatlit, M., 2004, 472 pp. (In Russian)

[28] Gelfand I. M., Fomin S. V., Calculus of Variations, Prentice-Hall Inc., Englewood Cliffs, N.J., 1963, 232 pp. | MR | MR