Computation of waves in elastic-plastic body
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 435-447
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              To study wave propagation in continuous media, the classical Godunov method, which is stable and monotonic, is widely used. However, due to the first order of accuracy, it can lead to strong smearing of jumps, contact discontinuities, and other features of the solution in regions with large gradients. The possibility of increasing the computational efficiency of the elastic-plastic waves in a body in comparison with the Godunov method by applying its TVD- and UNO-modifications has been investigated in this paper. The UNO-modification is strictly second-order accurate, whereas the TVD-modification loses that accuracy at the solution extrema due to exactly satisfying the condition of total variation diminishing, while the UNO-modification meets it approximately. The plastic state of the body has been described by the Mises condition. Estimation of the efficiency of the considered modifications has been carried out by comparing the results of their application to a number of problems with the results obtained by the Godunov method. Problems of the propagation of 1D plane elastic-plastic waves have been considered. Those waves result in a body from the action of a pressure pulse on its surface or the given impulsive displacement of the surface. It has been shown that on the same computational grids the results of the considered modifications are much better than those obtained by the Godunov method. In particular, the width of smearing the jump-like fronts of both the elastic and plastic waves is significantly less. At that, the UNO-modification is more preferable because the TVD-modification tends to “cut” the solution extrema.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
TVD scheme, UNO scheme, Godunov scheme, efficiency of difference schemes, elastic-plastic body.
                    
                  
                
                
                @article{UZKU_2018_160_3_a1,
     author = {A. A. Aganin and N. A. Khismatullina},
     title = {Computation of waves in elastic-plastic body},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {435--447},
     publisher = {mathdoc},
     volume = {160},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Aganin AU - N. A. Khismatullina TI - Computation of waves in elastic-plastic body JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 435 EP - 447 VL - 160 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a1/ LA - ru ID - UZKU_2018_160_3_a1 ER -
%0 Journal Article %A A. A. Aganin %A N. A. Khismatullina %T Computation of waves in elastic-plastic body %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 435-447 %V 160 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a1/ %G ru %F UZKU_2018_160_3_a1
A. A. Aganin; N. A. Khismatullina. Computation of waves in elastic-plastic body. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 435-447. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a1/
