Numerical investigation of nonlinear deformations with contact interaction
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 423-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the development of a computational algorithm for investigation of finite deformations of solids with contact interaction. The algorithm is based on the master-slave approach. The projection of the slave point onto the master surface, which is given parametrically, has been considered. All necessary kinematic relations have been constructed. To identify the contact areas, the closest point projection algorithm has been applied. The frictionless contact interaction between the contacting surfaces has been considered. The penalty method has been used for regularization of the contact conditions. The principle of virtual work in terms of the virtual velocity equation in the actual configuration has been used. The variation formulation of the solution of the problem with the contact interaction has been given. The functional of contact interaction from an unknown rate of penetration of one body into another has been constructed. The elastic deformation potential function has been used to obtain the constitutive relations. The incremental method has been applied to solve the nonlinear problem. The resolving equation has been constructed as a result of the linearization of the equation of the principle of virtual work in actual configuration. The linearized relations have been obtained. The algorithm of solving the nonlinear problem has been developed. The finite element implementation of the algorithm has been presented. The spatial discretization has been constructed on the basis of an eight-node finite element and a five-node contact element implementing solutions of the variational contact problem. The results of solving the model problems have been presented.
Keywords: finite deformations, contact interaction, penalty method, closest point projection algorithm.
@article{UZKU_2018_160_3_a0,
     author = {A. I. Abdrakhmanova and L. U. Sultanov},
     title = {Numerical investigation of nonlinear deformations with contact interaction},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {423--434},
     year = {2018},
     volume = {160},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a0/}
}
TY  - JOUR
AU  - A. I. Abdrakhmanova
AU  - L. U. Sultanov
TI  - Numerical investigation of nonlinear deformations with contact interaction
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 423
EP  - 434
VL  - 160
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a0/
LA  - ru
ID  - UZKU_2018_160_3_a0
ER  - 
%0 Journal Article
%A A. I. Abdrakhmanova
%A L. U. Sultanov
%T Numerical investigation of nonlinear deformations with contact interaction
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 423-434
%V 160
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a0/
%G ru
%F UZKU_2018_160_3_a0
A. I. Abdrakhmanova; L. U. Sultanov. Numerical investigation of nonlinear deformations with contact interaction. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 3, pp. 423-434. http://geodesic.mathdoc.fr/item/UZKU_2018_160_3_a0/

[1] Vorovich I. I., Aleksandrov V. M., Contact Mechanics Interaction, Fizmatlit, M., 2001, 671 pp. (In Russian)

[2] Johnson K. L., Contact mechanics, Cambridge Univ. Press, Cambridge, 1987, 452 pp.

[3] Landau L. D., Livshits E. M., Theory of Elasticity, Nauka, M., 1987, 246 pp. (In Russian)

[4] Badriev I. B., Makarov M. V., Paimushin V. N., “Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversally-soft core”, Russ. Math., 61:1 (2017), 69–75 | DOI | MR | Zbl

[5] Badriev I. B., Paimushin V. N., “Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations”, Lobachevskii J. Math., 38:5 (2017), 779–793 | DOI | MR | Zbl

[6] Berezhnoi D. V., Shamim R., “Numerical investigation of clinch connection manufacturing process”, Procedia Eng., 206 (2017), 1056–1062 | DOI

[7] Berezhnoi D. V., Shamim R., Balafendieva I. S., “Numerical modeling of mechanical behavior of clinch connections at breaking out and shearing”, MATEC Web Conf., 129 (2017), 03023, 4 pp. | DOI

[8] Bathe K.-J., Finite element procedures in engineering analysis, Prentice-Hall, 1996, 735 pp. | MR

[9] Sultanov L. U., “Analysis of large elastic-plastic deformations: Integration algorithm and numerical examples”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159:4 (2017), 509–517 (In Russian) | MR

[10] Bonet J., Wood R. D., Nonlinear continuum mechanics for finite element analysis, Cambridge Univ. Press, Cambridge, 1997, 279 pp. | MR | Zbl

[11] Wriggers P., Nonlinear Finite Element Methods, Springer-Verlag, Berlin–Heidelberg, 2008, XII+560 pp. | DOI | MR | Zbl

[12] Oden D., Finite Elements in Nonlinear Mechanics of Continuous Media, Mir, M., 1976, 465 pp. (In Russian)

[13] Zienkiewicz O. C., Taylor R. L., The finite element method, McGraw-Hill, 1994, 756 pp. | MR

[14] Davydov R. L., Sultanov L. U., “Numerical algorithm for investigating large elasto-plastic deformations”, J. Eng. Phys. Thermophys., 88:5 (2015), 1280–1288 | DOI

[15] Abdrakhmanova A. I., Sultanov L. U., “Numerical modelling of deformation of hyperelastic incompressible solids”, Mater. Phys. Mech., 26:1 (2016), 30–32

[16] Davydov R. L., Sultanov L. U. Numerical algorithm of solving the problem of large elastic-plastic deformation by FEM, Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., 2013, no. 1, 81–93 | DOI

[17] Konyukhov A., Izi R., Introduction to computational contact mechanics: a geometrical approach, John Wiley Sons Ltd, 2015, 304 pp. | Zbl

[18] Wriggers P., Computational Contact Mechanics, John Wiley Sons Ltd, 2002, 464 pp.

[19] Laursen T. A., Computational Contact and Impact Mechanics, Springer-Verlag, Berlin–Heidelberg, 2002, XV+454 pp. | DOI | MR | Zbl

[20] Puso M. A., Laursen T. A., Solberg J., “A segment-to-segment mortar contact method for quadratic elements and large deformations”, Comput. Methods Appl. Mech. Eng., 197:6–8 (2008), 555–566 | DOI | MR | Zbl

[21] Yang B., Laursen T. A., Meng X., “Two dimensional mortar contact methods for large deformation frictional sliding”, Int. J. Numer. Methods Eng., 62:9 (2005), 1183–1225 | DOI | MR | Zbl