@article{UZKU_2018_160_2_a9,
author = {J. Hamhalter and E. A. Turilova},
title = {Spectral order on unbounded operators and their symmetries},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {293--299},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a9/}
}
TY - JOUR AU - J. Hamhalter AU - E. A. Turilova TI - Spectral order on unbounded operators and their symmetries JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 293 EP - 299 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a9/ LA - en ID - UZKU_2018_160_2_a9 ER -
%0 Journal Article %A J. Hamhalter %A E. A. Turilova %T Spectral order on unbounded operators and their symmetries %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 293-299 %V 160 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a9/ %G en %F UZKU_2018_160_2_a9
J. Hamhalter; E. A. Turilova. Spectral order on unbounded operators and their symmetries. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 293-299. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a9/
[1] Kadison R. V., “Order properties of bounded self-adjoint operators”, Proc. Am. Math. Soc., 2 (1951), 505–510 | DOI | MR | Zbl
[2] Olson M. P., “The self-adjoint operators of a von Neumann algebra form a conditionally complete lattice”, Proc. Am. Math. Soc., 28:2 (1971), 537–544 | DOI | MR | Zbl
[3] Bush P., Grabowski M., Lahti P. J., Operational Quantum Physics, Springer, Berlin–Heidelberg, 1995, xi+232 pp. | DOI | MR
[4] Hamhalter J., Quantum Measure Theory, Springer Neth., 2003, viii+410 pp. | DOI | MR
[5] Landsman K., Foundations of Quantum Theory. From Classical Concepts to Operator Algebras, Springer, 2017, xxxvi+861 pp. | DOI | MR | Zbl
[6] Arveson W., “On groups of automorphisms of operator algebras”, J. Funct. Anal., 15:3 (1974), 217–243 | DOI | MR | Zbl
[7] Ando T., “Majorization, doubly stochastic matrices, and comparison of eigenvalues”, Linear Algebra Its Appl., 118 (1989), 163–248 | DOI | MR | Zbl
[8] de Groote H. F., On the canonical lattice structure on the effect algebra of a von Neumann algebra, 2004, 18 pp., arXiv: math-ph/0410018
[9] Hamhalter J., “Spectral order of operators and range projections”, J. Math. Anal. Appl., 331:2 (2007), 1122–1134 | DOI | MR | Zbl
[10] Hamhalter J., “Spectral lattices”, Int. J. Theor. Phys., 47:1 (2008), 245–251 | DOI | MR | Zbl
[11] Mitra S. K., Bhimasankaram P., Malik S. B., Matrix Partial Orders, Shorted Operators and Applications, World Sci. Publ. Co., Singapore, 2010, 464 pp. | MR | Zbl
[12] Molnar L., Semrl P., “Spectral order automorphisms of the spaces of Hilbert space effects and observables”, Lett. Math. Phys., 80:3 (2007), 239–255 | DOI | MR | Zbl
[13] Hamhalter J., Turilova E., “Spectral order on aw$^\ast$-algebras and its preservers”, Lobachevskii J. Math., 37:4 (2016), 439–448 | DOI | MR | Zbl
[14] Hamhalter J., Turilova E., “Quantum spectral symmetries”, Int. J. Theor. Phys., 56:12 (2017), 3807–3818 | DOI | MR | Zbl
[15] Turilova E., “Automorphisms of spectral lattices of unbounded positive operators”, Lobachevskii J. Math., 35:3 (2014), 259–263 | DOI | MR | Zbl
[16] Turilova E., “Automorphisms of spectral lattices of positive contractionson von Neumann algebras”, Lobachevskii J. Math., 35:4 (2014), 355–359 | DOI | MR | Zbl
[17] Schumudgen K., Unbounded Self-Adjoint Operators on Hilbert Space, Springer Neth., 2012, xx+432 pp. | DOI | MR
[18] Kadison R. V., Ringrose J. R., Fundamentals of the Theory of Operator Algebras, v. I, Pure and Applied Mathematics, Elementary Theory, Acad. Press, London, 1983, 398 pp. | MR | Zbl