Mots-clés : actions of group
@article{UZKU_2018_160_2_a8,
author = {S. G. Haliullin},
title = {Ultraproducts of von {Neumann} algebras and~ergodicity},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {287--292},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a8/}
}
TY - JOUR AU - S. G. Haliullin TI - Ultraproducts of von Neumann algebras and ergodicity JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 287 EP - 292 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a8/ LA - en ID - UZKU_2018_160_2_a8 ER -
S. G. Haliullin. Ultraproducts of von Neumann algebras and ergodicity. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 287-292. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a8/
[1] Mushtari D. H., Haliullin S. G., “Linear spaces with a probability measure, ultraproducts and contiguity”, Lobachevskii J. Math., 35:2 (2014), 138–146 | DOI | MR | Zbl
[2] Haliullin S., “Orthogonal decomposition of the Gaussian measure”, Lobachevskii J. Math., 2016, vol. 37, no. 4, 436–438 | DOI | MR | Zbl
[3] Heinrich S., “Ultraproducts in Banach space theory”, J. Reine Angew. Math., 313 (1980), 72–104 | MR | Zbl
[4] Ocneanu A., Actions of Discrete Amenable Groups on von Neumann Algebras, Springer, Berlin–Heidelberg, 1985, vii+114 pp. | DOI | MR
[5] Ando H., Haagerup U., “Ultraproducts of von Neumann algebras”, J. Funct. Anal., 266:12 (2014), 6842–6913 | DOI | MR | Zbl
[6] Gudder S. P., “A Radon-Nikodym theorem for $\ast$-algebras”, Pac. J. Math., 80:1 (1979), 141–149 | DOI | MR | Zbl
[7] Chetcutti E., Hamhalter J., “Vitali-Hahn-Saks theorem for vector measures on operator algebras”, Q. J. Math., 57 (2006), 479–493 | DOI | MR
[8] Haliullin S., “Contiguity and entire separability of states on von Neumann Algebras”, Int. J. Theor. Phys., 56:12 (2017), 3889–3894 | DOI | MR | Zbl
[9] Takesaki M., Theory of Operator Algebras III, Springer, Berlin–Heidelberg, 2003, xxii+548 pp. | DOI | MR | Zbl