On detection of Gaussian stochactic vectors
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 250-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of minimax detection of a Gaussian random signal vector in white Gaussian additive noise has been considered. We suppose that an unknown vector $\boldsymbol{\sigma}$ of the signal vector intensities belongs to the given set ${\mathcal E}$. We have investigated when it is possible to replace the set ${\mathcal E}$ (and, in particular, by a single point $\boldsymbol{\sigma}_{0}$) by a smaller set ${\mathcal E}_{0}$ without quality loss.
Keywords: detection, minimax, reduction.
@article{UZKU_2018_160_2_a4,
     author = {M. V. Burnashev},
     title = {On detection of {Gaussian} stochactic vectors},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {250--257},
     year = {2018},
     volume = {160},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a4/}
}
TY  - JOUR
AU  - M. V. Burnashev
TI  - On detection of Gaussian stochactic vectors
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 250
EP  - 257
VL  - 160
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a4/
LA  - en
ID  - UZKU_2018_160_2_a4
ER  - 
%0 Journal Article
%A M. V. Burnashev
%T On detection of Gaussian stochactic vectors
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 250-257
%V 160
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a4/
%G en
%F UZKU_2018_160_2_a4
M. V. Burnashev. On detection of Gaussian stochactic vectors. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 250-257. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a4/

[1] Wald A., Statistical Decision Functions, John Wiley Sons, New York, 1950, ix+179 pp. | MR | Zbl

[2] Burnashev M. V., “On the minimax detection of an inaccurately known signal in a white Gaussian noise background”, Theory Probab. Appl., 24:1 (1979), 106–119 | DOI | MR

[3] Zhang W., Poor H. V., “On minimax robust detection of stationary Gaussian signals in white Gaussian noise”, IEEE Trans. Inf. Theory, 57:6 (2011), 3915–3924 | DOI | MR | Zbl

[4] Burnashev M. V., “On detection of Gaussian stochastic sequences”, Probl. Inf. Transm., 53:4 (2017), 349–367 | DOI | MR

[5] Lehmann E. L., Testing of Statistical Hypotheses, John Wiley Sons, New York, 1959, 369 pp. | MR

[6] Ponomarenko L. S., “On estimating distributions of normalized quadratic forms of normally distributed random variables”, Theory Probab. Appl., 30:3 (1985), 580–584 | DOI | MR

[7] Bakirov N. K., “Comparison theorems for distribution functions of quadratic forms of Gaussian vectors”, Theory Probab. Appl., 40:2 (1995), 340–348 | DOI | MR | Zbl

[8] Burnashev M. V., “Two theorems on distribution of gaussian quadratic forms”, Probl. Inf. Transm., 53:3 (2017), 3–15 | DOI | MR | Zbl