@article{UZKU_2018_160_2_a3,
author = {A. M. Bikchentaev},
title = {On an analog of the {M.} {G.~Krein} theorem for measurable operators},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {243--249},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a3/}
}
TY - JOUR AU - A. M. Bikchentaev TI - On an analog of the M. G. Krein theorem for measurable operators JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 243 EP - 249 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a3/ LA - en ID - UZKU_2018_160_2_a3 ER -
A. M. Bikchentaev. On an analog of the M. G. Krein theorem for measurable operators. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 243-249. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a3/
[1] Gohberg I. C., Krein M. G., Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, R.I., 1969, 378 pp. | DOI | MR | Zbl
[2] Segal I. E., “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl
[3] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl
[4] Yeadon F. J., “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Philos. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl
[5] Ovchinnikov V. I., “Symmetric spaces of measurable operators”, Dokl. Akad. Nauk SSSR, 191:4 (1970), 769–771 (In Russian) | MR | Zbl
[6] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl
[7] Bikchentaev A. M., “On normal $\tau$-measurable operators affiliated with semifinite von Neumann algebras”, Math. Notes, 96:3–4 (2014), 332–341 | DOI | MR | Zbl
[8] Matsaev V. I., Mogul'ski E. Z., “On the possibility of weak perturbation of a complete operator up to a Volterra operator”, Dokl. Akad. Nauk SSSR, 207:3 (1972), 534–537 (In Russian) | MR | Zbl
[9] Antonevich A. B., Linear functional equations. Operator Approach, Birkhäuser, Basel, 1996, viii+183 pp. | MR | Zbl
[10] Krein S. G., Petunin Ju. I., Semenov E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54, Amer. Math. Soc., Providence, R.I., 1982, 375 pp. | MR