On an analog of the M. G. Krein theorem for measurable operators
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 243-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let ${\mathcal M}$ be a von Neumann algebra of operators on a Hilbert space $\mathcal H$ and $\tau$ be a faithful normal semifinite trace on $\mathcal{M}$. Let $\mu_t(T)$, $t>0$, be a rearrangement of a $\tau$-measurable operator $T$. Let us consider a $\tau$-measurable operator $A$, such that $\mu_t(A)>0$ for all $t>0$ and assume that $\mu_{2t}(A)/\mu_t(A) \to 1$ as $t \to \infty$. Let a $\tau$-compact operator $S$ be so that the operator $I+S$ is right invertible, where $I$ is the unit of ${\mathcal M}$. Then, for a $\tau$-measurable operator $B$, such that $A=B(I+S)$, we have $\mu_{t}(A)/\mu_t(B) \to 1$ as $t \to \infty$. It is an analog of the M.G. Krein theorem (for $\mathcal{M}=\mathcal{B}(\mathcal{H})$ and $\tau =\mathrm{tr}$, theorem 11.4, ch. V [Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. In: Translations of Mathematical Monographs. Vol. 18. Providence, R.I., Amer. Math. Soc., 1969. 378 p.] for $\tau$-measurable operators.
Keywords: Hilbert space, von Neumann algebra, normal trace, $\tau$-measurable operator, distribution function, rearrangement, $\tau$-compact operator.
@article{UZKU_2018_160_2_a3,
     author = {A. M. Bikchentaev},
     title = {On an analog of the {M.} {G.~Krein} theorem for measurable operators},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {243--249},
     year = {2018},
     volume = {160},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a3/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - On an analog of the M. G. Krein theorem for measurable operators
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 243
EP  - 249
VL  - 160
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a3/
LA  - en
ID  - UZKU_2018_160_2_a3
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T On an analog of the M. G. Krein theorem for measurable operators
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 243-249
%V 160
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a3/
%G en
%F UZKU_2018_160_2_a3
A. M. Bikchentaev. On an analog of the M. G. Krein theorem for measurable operators. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 243-249. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a3/

[1] Gohberg I. C., Krein M. G., Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, 18, Amer. Math. Soc., Providence, R.I., 1969, 378 pp. | DOI | MR | Zbl

[2] Segal I. E., “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl

[3] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[4] Yeadon F. J., “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Philos. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[5] Ovchinnikov V. I., “Symmetric spaces of measurable operators”, Dokl. Akad. Nauk SSSR, 191:4 (1970), 769–771 (In Russian) | MR | Zbl

[6] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[7] Bikchentaev A. M., “On normal $\tau$-measurable operators affiliated with semifinite von Neumann algebras”, Math. Notes, 96:3–4 (2014), 332–341 | DOI | MR | Zbl

[8] Matsaev V. I., Mogul'ski E. Z., “On the possibility of weak perturbation of a complete operator up to a Volterra operator”, Dokl. Akad. Nauk SSSR, 207:3 (1972), 534–537 (In Russian) | MR | Zbl

[9] Antonevich A. B., Linear functional equations. Operator Approach, Birkhäuser, Basel, 1996, viii+183 pp. | MR | Zbl

[10] Krein S. G., Petunin Ju. I., Semenov E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54, Amer. Math. Soc., Providence, R.I., 1982, 375 pp. | MR