Mots-clés : Lévy Laplacian, Hida calculus
@article{UZKU_2018_160_2_a21,
author = {B. O. Volkov},
title = {L\'evy {Laplacians} and annihilation process},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {399--409},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a21/}
}
B. O. Volkov. Lévy Laplacians and annihilation process. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 399-409. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a21/
[1] Lévy P., Problèmes concrets d'analyse fonctionnelle, Gautier-Villars, Paris, 1951, 498 pp. (In French) | MR | Zbl
[2] Kuo H.-H., Obata N., Saitô K., “Lévy-Laplacian of generalized functions on a nuclear space.”, J. Funct. Anal., 94:1 (1990), 74–92 | DOI | MR | Zbl
[3] Accardi L., Smolyanov O. G., “On Laplacians and traces”, Conferenze del Seminario di Matematica dell'Universit'a di Bari, 250 (1993), 1–25 | MR
[4] Volkov B. O., “Lévy Laplacians in Hida calculus and Malliavin calculus”, Proc. Steklov Inst. Math., 301:1 (2018), 11–24 | DOI | MR | Zbl
[5] Accardi L., Smolyanov O. G., “Classical and nonclassical Lévy Laplacians”, Dokl. Math., 76:3 (2007), 801–805 | DOI | MR | Zbl
[6] Volkov B. O., “Hierarchy of Lévy-Laplacians and quantum stochastic processes”, Infinite. Dimens. Anal. Quantum Probab. Relat. Top., 16:4 (2013), 1350027, 20 pp. | DOI | MR
[7] Kuo H.-H., White Noise Distribution Theory, Kluwer Acad. Publ., 1996, 400 pp. | MR
[8] Hida T., Si S., Lectures on White Noise Functionals, Kluwer Acad. Publ., 2008, 280 pp. | DOI | MR
[9] Accardi L., Lu Y.-G., Volovich I. V., “Nonlinear extensions of classical and quantum stochastic calculus and essentially infinite dimensional analysis”, Probability Towards 2000, Lecture Notes in Statistics, 128, eds. Accardi L., Heyde C. C., Springer, New York, 1998, 1–33 | DOI | MR | Zbl
[10] Accardi L., Smolyanov O. G., “Representations of Lévy Laplacians and related semigroups and harmonic functions”, Dokl. Math., 65 (2002), 356–362 | MR | Zbl
[11] Accardi L., Smolyanov O. G., “Generalized Lévy Laplacians and Cesàro means”, Dokl. Math., 79 (2009), 90–93 | DOI | MR | Zbl
[12] Accardi L., Gibilisco P., Volovich I. V., “Yang–Mills gauge fields as harmonic functions for the Lévy-Laplacian”, Russ. J. Math. Phys., 2:2 (1994), 235–250 | MR | Zbl
[13] Leandre R., Volovich I. V., “The stochastic Lévy Laplacian and Yang–Mills equation on manifolds”, Infinite Dimens. Anal. Quantum Probab. Relat. Top., 4:2 (2001), 151–172 | DOI | MR
[14] Volkov B. O., “Lévy Laplacians and instantons”, Proc. Steklov Inst. Math., 290:1 (2015), 210–222 | DOI | MR | Zbl
[15] Volkov B. O., Lévy differential operators and gauge invariant equations for Dirac and Higgs fields, 2016, 19 pp., arXiv: 1612.00310
[16] Volkov B. O., “Stochastic Lévy differential operators and Yang–Mills equations”, Infinite Dimens. Anal. Quantum Probab. Relat. Top., 20:2 (2017), 1750008, 23 pp. | DOI | MR | Zbl
[17] Obata N., White noise calculus and Fock space, Lecture Notes in Mathematics, 1577, Springer, 1994, x+190 pp. | DOI | MR | Zbl
[18] Hida T., Kuo H.-H., Potthoff J., Streit L., White Noise: An Infinite Dimensional Calculus, Springer Netherlands, 1993, xiv+520 pp. | DOI | MR
[19] Obata N., “Quadratic quantum white noises and Lévy-Laplacians”, Nonlinear Anal.-Theory Methods Appl., 47 (2001), 2437–2448 | DOI | MR | Zbl
[20] Obama N., “Integral kernel operators on Fock space – generalizations and applications to quantum dynamics”, Acta Appl. Math., 47:1 (1997), 49–77 | DOI | MR
[21] Accardi L., Lu Y.-G., Volovich I. V., Quantum Theory and Its Stochastic Limit, Springer Verlag, Berlin, 2002, xx+474 pp. | DOI | MR | Zbl
[22] Volovich I. V., Kozyrev S. V., “Manipulation of states of a degenerate quantum system”, Proc. Steklov Inst. Math., 294:1 (2016), 241–251 | DOI | MR | Zbl
[23] Trushechkin A. S., Volovich I. V., “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, EPL, 113 (2016), 30005, p1–p6 | DOI
[24] Arnaudon M., Bauer R. O., Thalmaier A., “A probabilistic approach to the Yang–Mills heat equation”, J. Math. Pures Appl., 81:2 (2002), 143–166 | DOI | MR | Zbl
[25] Marchuk N. G., Shirokov D. S., “General solutions of one class of field equations”, Rep. Math. Phys., 78:3 (2016), 305–326 | DOI | MR | Zbl
[26] Zharinov V. V., “Backlund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | MR | Zbl
[27] Katanaev M. O., “Killing vector fields and a homogeneous isotropic universe”, Phys.-Usp., 59:7 (2016), 689–700 | DOI