Manifold learning in statistical tasks
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 229-242
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              Many tasks of data analysis deal with high-dimensional data, and curse of dimensionality is an obstacle to the use of many methods for their solving. In many applications, real-world data occupy only a very small part of high-dimensional observation space, the intrinsic dimension of which is essentially lower than the dimension of this space. A popular model for such data is a manifold model in accordance with which data lie on or near an unknown low-dimensional data manifold (DM) embedded in an ambient high-dimensional space. Data analysis tasks studied under this assumption are referred to as the manifold learning ones. Their general goal is to discover a low-dimensional structure of high-dimensional manifold valued data from the given dataset. If dataset points are sampled according to an unknown probability measure on the DM, we face statistical problems on manifold valued data. The paper gives a short review of statistical problems regarding high-dimensional manifold valued data and the methods for solving them.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
data analysis, mathematical statistics, manifold learning, manifold estimation, density on manifold estimation, regression on manifolds.
                    
                    
                    
                  
                
                
                @article{UZKU_2018_160_2_a2,
     author = {A. V. Bernstein},
     title = {Manifold learning in statistical tasks},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {229--242},
     publisher = {mathdoc},
     volume = {160},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a2/}
}
                      
                      
                    TY - JOUR AU - A. V. Bernstein TI - Manifold learning in statistical tasks JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 229 EP - 242 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a2/ LA - en ID - UZKU_2018_160_2_a2 ER -
A. V. Bernstein. Manifold learning in statistical tasks. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 229-242. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a2/
