Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 384-391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Averaging of random shift operators on a space of the square integrable by shift-invariant measure complex-valued functions on linear topological spaces has been studied. The case of the $l_\infty$ space has been considered as an example. A shift-invariant measure on the $l_\infty$ space, which was constructed by Caratheodory's scheme, is $\sigma$-additive, but not $\sigma$-finite. Furthermore, various approximations of measurable sets have been investigated. One-parameter groups of shifts along constant vector fields in the $l_\infty$ space and semigroups of shifts to a random vector, the distribution of which is given by a collection of the Gaussian measures, have been discussed. A criterion of strong continuity for a semigroup of shifts along a constant vector field has been established. Conditions for collection of the Gaussian measures, which guarantee the semigroup property and strong continuity of averaged one-parameter collection of linear operators, have been defined.
Keywords: strongly continuous semigroups, averaging of operator semigroups, shift-invariant measures, square integrable functions.
@article{UZKU_2018_160_2_a19,
     author = {V. Zh. Sakbaev and D. V. Zavadsky},
     title = {Shift-invariant measures on~infinite-dimensional spaces: integrable functions and random walks},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {384--391},
     year = {2018},
     volume = {160},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a19/}
}
TY  - JOUR
AU  - V. Zh. Sakbaev
AU  - D. V. Zavadsky
TI  - Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 384
EP  - 391
VL  - 160
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a19/
LA  - en
ID  - UZKU_2018_160_2_a19
ER  - 
%0 Journal Article
%A V. Zh. Sakbaev
%A D. V. Zavadsky
%T Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 384-391
%V 160
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a19/
%G en
%F UZKU_2018_160_2_a19
V. Zh. Sakbaev; D. V. Zavadsky. Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 384-391. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a19/

[1] Baker R., “Lebesgue measure on $R^{\infty }$”, Proc. Am. Math. Soc., 113:4 (1991), 1023–1029 | DOI | MR | Zbl

[2] Zavadsky D. V., “Shift-invariant measures on sequence spaces”, Tr. Fiz.-Tekh. Inst., 9:4 (2017), 142–148 (In Russian)

[3] Sakbaev V. Zh., “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theor. Math. Phys., 191:3 (2017), 886–909 | DOI | MR | Zbl

[4] Sakbaev V. Z., “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh. Temat. Obz., 140, 2017, 88–118 (In Russian) | MR

[5] Bogachev V. I., Gaussian Measures, Fizmatlit, M., 1997, 352 pp. (In Russian) | MR | Zbl