Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 384-391
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
Averaging of random shift operators on a space of the square integrable by shift-invariant measure complex-valued functions on linear topological spaces has been studied. The case of the $l_\infty$ space has been considered as an example. A shift-invariant measure on the $l_\infty$ space, which was constructed by Caratheodory's scheme, is $\sigma$-additive, but not $\sigma$-finite. Furthermore, various approximations of measurable sets have been investigated. One-parameter groups of shifts along constant vector fields in the $l_\infty$ space and semigroups of shifts to a random vector, the distribution of which is given by a collection of the Gaussian measures, have been discussed. A criterion of strong continuity for a semigroup of shifts along a constant vector field has been established. Conditions for collection of the Gaussian measures, which guarantee the semigroup property and strong continuity of averaged one-parameter collection of linear operators, have been defined.
Keywords:
strongly continuous semigroups, averaging of operator semigroups, shift-invariant measures, square integrable functions.
@article{UZKU_2018_160_2_a19,
author = {V. Zh. Sakbaev and D. V. Zavadsky},
title = {Shift-invariant measures on~infinite-dimensional spaces: integrable functions and random walks},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {384--391},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a19/}
}
TY - JOUR AU - V. Zh. Sakbaev AU - D. V. Zavadsky TI - Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 384 EP - 391 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a19/ LA - en ID - UZKU_2018_160_2_a19 ER -
%0 Journal Article %A V. Zh. Sakbaev %A D. V. Zavadsky %T Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 384-391 %V 160 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a19/ %G en %F UZKU_2018_160_2_a19
V. Zh. Sakbaev; D. V. Zavadsky. Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 384-391. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a19/