Mots-clés : stochastic diffusion process
@article{UZKU_2018_160_2_a17,
author = {E. A. Pchelintsev and S. S. Perelevskiy and I. A. Makarova},
title = {Improved nonparametric estimation of the drift in diffusion processes},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {364--372},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a17/}
}
TY - JOUR AU - E. A. Pchelintsev AU - S. S. Perelevskiy AU - I. A. Makarova TI - Improved nonparametric estimation of the drift in diffusion processes JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 364 EP - 372 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a17/ LA - en ID - UZKU_2018_160_2_a17 ER -
%0 Journal Article %A E. A. Pchelintsev %A S. S. Perelevskiy %A I. A. Makarova %T Improved nonparametric estimation of the drift in diffusion processes %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 364-372 %V 160 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a17/ %G en %F UZKU_2018_160_2_a17
E. A. Pchelintsev; S. S. Perelevskiy; I. A. Makarova. Improved nonparametric estimation of the drift in diffusion processes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 364-372. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a17/
[1] Karatzas I., Shreve S. E., Methods of Mathematical Finance, Springer, New York, 1998, xv+415 pp. | DOI | MR | Zbl
[2] Kutoyants Yu. A., Statistical Inference for Ergodic Diffusion Processes, Springer, London, 2004, xiv+482 pp. | DOI | MR | Zbl
[3] Galtchouk L. I., Konev V. V., “On sequential estimation of parameters in continuous-time stochastic regression”, Statistics and Control of Stochastic Processes, World Sci. Publ., River Edge, 1997, 123–138 | MR | Zbl
[4] Galtchouk L. I., Konev V. V., “On sequential estimation of parameters in semimartingale regression models with continuous time parameter”, Ann. Stat., 29 (2001), 1508–2035 | DOI | MR
[5] Konev V. V., Pergamenshchikov S. M., “On truncated sequential estimation of the parameters of diffusion processes”, Methods of Economical Analysis, Tsentr. Ekon.-Mat. Inst. Ross. Akad. Nauk, M., 1992, 3–31 (In Russian) | MR
[6] Galtchouk L. I., Pergamenshchikov S. M., “Asymptotically efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes”, Stat. Inference Stoch. Processes, 9:1 (2006), 1–16 | DOI | MR | Zbl
[7] Pchelintsev E., “Improved estimation in a non-Gaussian parametric regression”, Stat. Inference Stoch. Processes, 16:1 (2013), 15–28 | DOI | MR | Zbl
[8] Konev V. V., Pergamenshchikov S. M., Pchelintsev E. A., “Estimation of a regression with the pulse type noise from discrete data”, Theory Probab. Its Appl., 58:3 (2014), 442–457 | DOI | MR | Zbl
[9] Pchelintsev E., Pchelintsev V., Pergamenshchikov S., Improved robust model selection methods for the Lévy nonparametric regression in continuous time, 2017, 32 pp., arXiv: 1710.03111
[10] Galtchouk L. I., Pergamenshchikov S. M., Adaptive sequential estimation for ergodic diffusion processes in quadratic metric. Part 1. Sharp non-asymptotic oracle inequalities, , 34 pp. hal-00177875
[11] Ibragimov I. A., Has'minskii R. Z., Statistical Estimation: Asymptotic Theory, Springer, New York, 1981, vii+403 pp. | DOI | MR | Zbl