Risk function and optimality of statistical procedures for identification of network structures
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 317-326 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Identification of network structures using the finite-size sample has been considered. The concepts of random variables network and network model, which is a complete weighted graph, have been introduced. Two types of network structures have been investigated: network structures with an arbitrary number of elements and network structures with a fixed number of elements of the network model. The problem of identification of network structures has been investigated as a multiple testing problem. The risk function of statistical procedures for identification of network structures can be represented as a linear combination of expected numbers of incorrectly included elements and incorrectly non-included elements. The sufficient conditions of optimality for statistical procedures for network structures identification with an arbitrary number of elements have been given. The concept of statistical uncertainty of statistical procedures for identification of network structures has been introduced.
Keywords: random variables network, network model, network structure, procedure for identification of network structure, additive loss function, risk function, unbiasedness, optimality, statistical uncertainty.
@article{UZKU_2018_160_2_a12,
     author = {P. A. Koldanov},
     title = {Risk function and optimality of statistical procedures for identification of network structures},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {317--326},
     year = {2018},
     volume = {160},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a12/}
}
TY  - JOUR
AU  - P. A. Koldanov
TI  - Risk function and optimality of statistical procedures for identification of network structures
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 317
EP  - 326
VL  - 160
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a12/
LA  - en
ID  - UZKU_2018_160_2_a12
ER  - 
%0 Journal Article
%A P. A. Koldanov
%T Risk function and optimality of statistical procedures for identification of network structures
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 317-326
%V 160
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a12/
%G en
%F UZKU_2018_160_2_a12
P. A. Koldanov. Risk function and optimality of statistical procedures for identification of network structures. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 317-326. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a12/

[1] Jordan M. I., “Graphical models”, Stat. Sci., 19:1 (2004), 140–155 | DOI | MR | Zbl

[2] Lauritzen S. L., Graphical Models, Oxford Univ. Press, Oxford, 1996, 298 pp. | MR | Zbl

[3] Anderson T. W., An Introduction to Multivariate Statistical Analysis, John Wiley Sons, New York, 2003, 752 pp. | MR

[4] Drton M., Perlman M. D., “Model selection for Gaussian concentration graph”, Biometrika, 91:3 (2004), 591–602 | DOI | MR | Zbl

[5] Drton M., Perlman M., “Multiple testing and error control in Gaussian graphical model selection”, Stat. Sci., 22:3 (2008), 430–449 | DOI | MR

[6] Boginski V., Butenko S., Pardalos P. M., “On structural properties of the market graph”, Innovations in Financial and Economic Networks, Edward Elgar Publ., Cheltenham, 2003, 29–45

[7] Mantegna R. N., “Hierarchical structure in financial markets”, Eur. Phys. J. B, 11:1 (1999), 193–197 | DOI

[8] Koldanov A. P., Koldanov P. A., Kalyagin V. A., Pardalos P. M., “Statistical procedures for the market graph construction”, Comput. Stat. Data Anal., 68 (2013), 17–29 | DOI | MR | Zbl

[9] Koldanov P. A., “Risk function of statistical procedures for network structures identification”, Vestn. TVGU. Ser. Prikl. Mat., 2017, no. 3, 45–59 (In Russian) | DOI

[10] Lehmann E. L., “A theory of some multiple decision problems, I”, Ann. Math. Stat., 28:1 (1957), 1–25 | DOI | MR | Zbl

[11] Wald A., Statistical Decision Functions, John Wiley Sons, New York, 1950, 179 pp. | MR | Zbl

[12] Koldanov P., Koldanov A., Kalyagin V., Pardalos P. M., “Uniformly most powerful unbiased test for conditional independence in Gaussian graphical model”, Stat. Probab. Lett., 122 (2017), 90–95 | DOI | MR | Zbl

[13] Kalyagin V. A., Koldanov A. P., Koldanov P. A., Pardalos P. M., Zamaraevand V. A., “Measures of uncertainty in market network analysis”, Phys. A, 413:1 (2014), 59–70 | DOI | MR | Zbl