Mots-clés : estimation of entanglement
@article{UZKU_2018_160_2_a0,
author = {Sumiyoshi Abe},
title = {Estimating entanglement in a~class of $n$-qudit states},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {213--219},
year = {2018},
volume = {160},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a0/}
}
TY - JOUR AU - Sumiyoshi Abe TI - Estimating entanglement in a class of $n$-qudit states JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 213 EP - 219 VL - 160 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a0/ LA - en ID - UZKU_2018_160_2_a0 ER -
Sumiyoshi Abe. Estimating entanglement in a class of $n$-qudit states. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 2, pp. 213-219. http://geodesic.mathdoc.fr/item/UZKU_2018_160_2_a0/
[1] Helstrom C. W., Quantum Detection and Estimation Theory, Acad. Press, 1976, 308 pp. | MR | Zbl
[2] Holevo A. S., Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, 1982, xii+312 pp. | MR | Zbl
[3] Barndorff-Nielsen O. E., Gill R. D., Jupp P. E., “On quantum statistical inference”, J. R. Stat. Soc. B, 65:4 (2003), 775–816 | DOI | MR | Zbl
[4] Petz D., Ghinea C., “Introduction to quantum Fisher information”, Quantum Probability and Related Topics, Proc. 30th Conf., eds. Rebolledo R., Orszag M., World Sci. Publ., Singapore, 2011, 261–281 | DOI | MR | Zbl
[5] Sarovar M., Milburn G. J., “Optimal estimation of one-parameter quantum channels”, J. Phys. A: Math. Gen., 39:26 (2006), 8487–8505 | DOI | MR | Zbl
[6] Zanardi P., Paris G. A.M., Venuti L. C., “Quantum criticality as a resource for quantum estimation”, Phys. Rev. A, 78:4 (2008), 042105, 1–7 | DOI | MR | Zbl
[7] Bradshaw M., Assad S. M., Lam P. K., “A tight Cramér-Rao bound for joint parameter estimation with a pure two-mode squeezed probe”, Phys. Lett. A, 381:32 (2017), 2598–2607 | DOI | MR
[8] Abe S. Estimation of the thermal degree of freedom in thermo field dynamics, Phys. Lett. A, 254:3–4 (1999), 149–153 | DOI
[9] Hayashi M. (ed.), Asymptotic Theory of Quantum Statistical Inference: Selected Papers, World Sci. Publ., Singapore, 2005, 560 pp. | DOI | Zbl
[10] Wiseman H. M., Milburn G. J., Quantum Measurement and Control, Cambridge Univ. Press, Cambridge, 2010, 460 pp. | MR | Zbl
[11] Boixo S., Monras A., “Operational interpretation for global multipartite entanglement”, Phys. Rev. Lett., 100:10 (2008), 100503, 1–4 | DOI
[12] Genoni M. G., Giorda P., Paris M. G. A., “Optimal estimation of entanglement”, Phys. Rev. A, 78:3 (2008), 032303, 1–9 | DOI | MR
[13] Werner R. F., “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model”, Phys. Rev. A, 40:8 (1989), 4277–4281 | DOI | Zbl
[14] Popescu R. F., Bell's inequalities versus teleportation: What is nonlocality?, Phys. Rev. Lett., 72:6 (1994), 797–799 | DOI | MR | Zbl
[15] Zhang Y.-S., Huang Y.-F., Li Ch.-F., Guo G.-C., “Experimental preparation of the Werner state via spontaneous parametric down-conversion”, Phys. Rev. A, 66:6 (2002), 062315, 1–4 | DOI
[16] Barbieri M., De Martini F., Di Nepi G., Mataloni P., D'Ariano G. M., Macchiavello C., “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness”, Phys. Rev. Lett., 91:22 (2003), 227901, 1–4 | DOI
[17] Jakóbczyk L., “Generation of Werner-like stationary states of two qubits in a thermal reservoir”, J. Phys. B: At. Mol. Opt. Phys., 43:1 (2010), 015502, 1–7 | DOI
[18] Peres A., “Separability criterion for density matrices”, Phys. Rev. Lett., 77:8 (1996), 1413–1415 | DOI | MR | Zbl
[19] Horodecki M., Horodecki P., Horodecki R., “Separability of mixed states: Necessary and sufficient conditions”, Phys. Lett. A, 223:1–2 (1996), 1–8 | DOI | MR | Zbl
[20] Abe S., Rajagopal A. K., “Nonadditive conditional entropy and its significance for local realism”, Phys. A, 289:1–2 (2001), 157–164 | DOI | MR | Zbl
[21] Pittenger A. O., Rubin M. H., “Separability and Fourier representations of density matrices”, Phys. Rev. A, 62:3 (2000), 032313, 1–9 | DOI | MR
[22] Pittenger A. O., Rubin M. H., “Note on separability of the Werner states in arbitrary dimensions”, Opt. Commun., 179:1–6 (2000), 447–449 | DOI
[23] Abe S., “Nonadditive information measure and quantum entanglement in a class of mixed states of an $n^n$ system”, Phys. Rev. A, 65 (2002), 052323, 1–6 | DOI | MR
[24] Nayak A. S., Sudha, Usha Devi A. R. Rajagopal A. K., “One parameter family of $N$-qudit Werner–Popescu states: Bipartite separability using conditional quantum relative Tsallis entropy”, J. Quantum Inf. Sci., 8:1 (2018), 12–23 | DOI
[25] Jozsa R., “Fidelity for mixed quantum states”, J. Mod. Opt., 41:12 (1994), 2315–2323 | DOI | MR | Zbl
[26] Schumacher B., “Quantum coding”, Phys. Rev. A, 51:4 (1995), 2738–2747 | DOI | MR
[27] Abe S., “Nonadditive generalization of the quantum Kullback–Leibler divergence for measuring the degree of purification”, Phys. Rev. A, 68:3 (2003), 032302, 1–3 | DOI
[28] Rajagopal A. K., Usha Devi A. R., Rendell R. W., “Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms”, Phys. Rev. A, 82:4 (2010), 042107, 1–7 | DOI