Self-consistent model for enhancement of the Raman scattering of polarized light in azo-polymer film with a plasmonic nanoantenna
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 61-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to modeling of the Raman scattering in the “antenna–sample” system. The system consists of an anisotropic azo-dye molecule attached covalently to a polymer chain and a plasmonic antenna located near the molecule. A model of near-field interaction in a system of dipoles has been proposed. The model takes into account changes in the polarizabilities of both the antenna and the molecule due to the mutual influence of their near field on each other. Based on the proposed model, the spectra of the tip-enhanced Raman scattering in longitudinally and transversely polarizied field for both isomers of azo-chromophore have been simulated. The static polarizability of the molecule and the Raman-tensors of the vibration modes have been determined by the quantum chemical calculations of a molecule with one monomer according to the density functional theory.
Mots-clés : azo-chromophore
Keywords: azo-polymer film, plasmonic antenna, tip-enhanced Raman scattering, near-field polarization, density functional theory, polarizability tensor, Raman tensor.
@article{UZKU_2018_160_1_a5,
     author = {A. R. Gazizov and S. S. Kharintsev and M. Kh. Salakhov},
     title = {Self-consistent model for enhancement of the {Raman} scattering of polarized light in azo-polymer film with a~plasmonic nanoantenna},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {61--71},
     year = {2018},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a5/}
}
TY  - JOUR
AU  - A. R. Gazizov
AU  - S. S. Kharintsev
AU  - M. Kh. Salakhov
TI  - Self-consistent model for enhancement of the Raman scattering of polarized light in azo-polymer film with a plasmonic nanoantenna
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 61
EP  - 71
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a5/
LA  - ru
ID  - UZKU_2018_160_1_a5
ER  - 
%0 Journal Article
%A A. R. Gazizov
%A S. S. Kharintsev
%A M. Kh. Salakhov
%T Self-consistent model for enhancement of the Raman scattering of polarized light in azo-polymer film with a plasmonic nanoantenna
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 61-71
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a5/
%G ru
%F UZKU_2018_160_1_a5
A. R. Gazizov; S. S. Kharintsev; M. Kh. Salakhov. Self-consistent model for enhancement of the Raman scattering of polarized light in azo-polymer film with a plasmonic nanoantenna. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 61-71. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a5/

[1] Kharintsev S. S., Fishman A. I., Saikin S. K., Kazarian S. G., “Near-field Raman dichroism of azo-polymers exposed to nanoscale dc electrical and optical poling”, Nanoscale, 8:47 (2016), 19867–19875 | DOI

[2] Mino T., Saito Y., Yoshida H., Kawata S., Verma P., “Molecular orientation analysis of organic thin films by z-polarization Raman microscope”, J. Raman Spectrosc., 43:12 (2012), 2029–2034 | DOI

[3] Novotny L., van Hulst N., “Antennas for light”, Nat. Photonics, 5 (2011), 83–90 | DOI

[4] Krasnok A. E., Maksimov I. S. Denisyuk A. I., Belov P. A., Miroshnichenko A. E., Simovskii K. R., Kivshar' Yu. S., “Optical nanoantennas”, Usp. Fiz. Nauk, 183:11 (2013), 561–589 (In Russian) | DOI

[5] Mino T., Saito Y., Verma P., “Quantitative analysis of polarization-controlled tip-enhanced raman imaging through the evaluation of the tip dipole”, ACS Nano, 8:10 (2014), 10187–10195 | DOI

[6] Mino T., Saito Y., Verma P., “Control of near-field polarizations for nanoscale molecular orientational imaging”, Appl. Phys. Lett., 109:4 (2016), Art. 041105, 5 pp. | DOI | MR

[7] Saito Y., Verma P., “Polarization-controlled Raman microscopy and nanoscopy”, J. Phys. Chem., 3:10 (2012), 1295–1300 | DOI

[8] Yano T., Ichimura T., Kuwahara S., H'Dhili F., Uetsuki K., Okuno Y., Verma P., Kawata S., “Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes”, Nat. Commun., 4 (2013), Art. 3592, 7 pp. | DOI

[9] Ossikovski R., Nguyen Q., Picardi G., “Simple model for the polarization effects in tip-enhanced Raman spectroscopy”, Phys. Rev. B, 75:4 (2007), Art. 045412, 9 pp. | DOI

[10] Cançado L. G., Jorio A., Ismach A., Joselevich E., Hartschuh A., Novotny L., “Mechanism of near-field Raman enhancement in one-dimensional systems”, Phys. Rev. Lett., 103:18 (2009), Art. 186101, 4 pp. | DOI

[11] Maximiano R. V., Beams R., Novotny L., Jorio A., Cançado L. G., “Mechanism of near-field Raman enhancement in two-dimensional systems”, Phys. Rev. B, 85:13 (2012), Art. 235434, 8 pp. | DOI

[12] Nikonorova N. A., Balakina M. Yu., Fominykh O. D., Pudovkin M. S., Vakhonina T. A., Diaz-Calleja R., Yakimanskya A. V., “Dielectric spectroscopy and molecular dynamics of epoxy oligomers with covalently bonded nonlinear optical chromophores”, Chem. Phys. Lett., 552 (2012), 114–121 | DOI

[13] Merlen A., Valmalette J. C., Gucciardi P. G., Lamy de la Chapelle M., Frigout A., Ossikovski R., “Depolarization effects in tip-enhanced Raman spectroscopy”, J. Raman Spectrosc., 40:10 (2009), 1361–1370 | DOI

[14] Novotny L., Hecht B., Principles of Nano-Optics, Cambridge Univ. Press, N.Y., 2006, 559 pp.

[15] Landau L. D., Lifshitz E. M., Course of Theoretical Physics, v. VIII, Electrodynamics of Continuous Media, Nauka, Moscow, 1982, 621 pp. (In Russian)

[16] Becke A. D., “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., 98:7 (1993), 5648–5652 | DOI

[17] Lee C., Yang W., Parr R. G., “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37:2 (1988), 785–789 | DOI

[18] Weigend F., Ahlrichs R., “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy”, Phys. Chem. Chem. Phys., 7:18 (2005), 3297–3305 | DOI

[19] Grimme S., Ehrlich S., Goerigk L., “Effect of the damping function in dispersion corrected density functional theory”, J. Comput. Chem., 32:15 (2011), 1456–1465 | DOI

[20] Grimme S., Ehrlich S., Antony J., Krieg H., “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu”, J. Chem. Phys., 132:7 (2010), Art. 154104, 19 pp. | DOI

[21] Neese F., “The ORCA program system”, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2:1 (2012), 73–78 | DOI

[22] Kharintsev S. S., Shukhina K. L., Fishman A. I., Saikin S. K., “Effect of secondary relaxation transitions on photo-induced anisotropy in glassy azobenzene-functionalized polymers”, J. Mat. Chem. C, 5:27 (2017), 6828–6833 | DOI

[23] Arnoldus H. F., “Representation of the near-field, middle-field, and far-field electromagnetic Green's functions in reciprocal space”, J. Opt. Soc. Am. B, 18:4 (2001), 547–555 | DOI

[24] Johnson P. B., Christy R. W., “Optical constants of the noble metals”, Phys. Rev. B, 6:12 (1972), 4370–4379 | DOI