Transformation geometry under simple shear
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 196-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Transformation geometry under simple shear has been analyzed. For this purpose, the mathematical apparatus of the nonlinear theory of elasticity has been used. The sequence of transformations under simple shear has been investigated. Comparison with polar decomposition has been performed. The regions of compression and extension in the deformation ellipse have been determined. It has been shown that a simple shift can be represented in the form of successive actions of rotation, deformation and rotation.
Keywords: simple shear, deformation ellipse, Cauchy–Green tensor
Mots-clés : tensor of deformation gradient, polar decomposition.
@article{UZKU_2018_160_1_a18,
     author = {A. M. Dumansky and M. Y. Rusin and V. I. Nepovinnykh},
     title = {Transformation geometry under simple shear},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {196--206},
     year = {2018},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a18/}
}
TY  - JOUR
AU  - A. M. Dumansky
AU  - M. Y. Rusin
AU  - V. I. Nepovinnykh
TI  - Transformation geometry under simple shear
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 196
EP  - 206
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a18/
LA  - ru
ID  - UZKU_2018_160_1_a18
ER  - 
%0 Journal Article
%A A. M. Dumansky
%A M. Y. Rusin
%A V. I. Nepovinnykh
%T Transformation geometry under simple shear
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 196-206
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a18/
%G ru
%F UZKU_2018_160_1_a18
A. M. Dumansky; M. Y. Rusin; V. I. Nepovinnykh. Transformation geometry under simple shear. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 196-206. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a18/

[1] Dumansky A. M., Tairova L. P., “Time-dependent behavior of carbon fibre reinforced laminates”, Proc. 2nd Int. Conf. on Advanced Composite Materials and Technologies for Aerospace Applications (ACMTAA-2012), Wrexham, North Wales, UK, 2012, 75–79

[2] Dumansky A. M., Tairova L. P., “Analysis of nonlinear mechanical behavior of carbon fibre reinforced polymer laminates”, Proc. 3rd Int. Conf. on Advanced Composite Materials and Technologies for Aerospace Applications (ACMTAA-2013), Wrexham, North Wales, UK, 2013, 66–69

[3] Dumanskii A. M., Nepovinnykh V. I., Rusin M. Yu., Terehin A. V., “Estimating the limit state of sealants in aircraft structures”, Polym. Sci. Ser. D, 7:3 (2014), 201–207 | DOI

[4] Tatarniov O. V., Rusin M. Y., Vorob'ev S. B., Prasolov A. N., “Modeling of elastic behavior of organic silicon sealants under finite strain.”, Klei, Germetiki, Tekhnol., 2008, no. 2, 20–23 (In Russian)

[5] Nepovinnykh V. I., Rusin M. Yu., Dumanskii A. M., “General rules of formation of an ordered relief on a sealant fracture surface under shear loading”, Polym. Sci. Ser. D, 9:2 (2016), 145–150 | DOI

[6] Kolodyazhnyi S. Yu., Paleoproterozoic Structural Kinematic Evolution of the Southeastern Part of the Baltic Shield, GEOS, Moscow, 2006, 334 pp. (In Russian)

[7] Gzovsky M. V., Principles of Tectonophysics, Nauka, Moscow, 1975, 536 pp. (In Russian)

[8] Yakovlev F. L., “Strain analysis of shear zones in terms of types of secondary fractures: Problem statement”, Geodin. Tektonofiz., 2:1 (2011), 68–82 (In Russian)

[9] Hart-Smith L. J., “The design of adhesively bonded joints”, The Mechanics of Adhesion, eds. D. A. Dillard, A. V. Pocius, Elsevier, Amsterdam, 2002, 746–777

[10] Truesdell C., A First Course in Rational Continuum Mechanics, Baltimore, Md., 1972, 592 pp.

[11] Ogden R. W., “Elements of the theory of finite elasticity”, Nonlinear Elasticity. Theory and Applications, eds. Y. B. Fu, R. W. Ogden, Cambridge Univ. Press, Cambridge, 2001, 1–57 | MR | Zbl

[12] Boulanger Ph., Hayes M., “Shear”, Nonlinear Elasticity. Theory and Applications, eds. Y. B. Fu, R. W. Ogden, Cambridge Univ. Press, Cambridge, 2001, 201–232 | DOI | MR | Zbl

[13] Golovanov A. I., “Kinematics of finite elastoplastic deformations”, Russ. Math., 54:7 (2010), 12–25 | DOI | MR | Zbl

[14] Mase G., Theory and Problems of Continuum Mechanics, McGraw Hill Company, New York, 1970, 320 pp.

[15] Godunov S. K., Romensky E. I., Elements of Continuum Mechanics and Conservation Laws, Nauchn. Kn., Novosibirsk, 1998, 267 pp. (In Russian)

[16] Destrade M., Murphy J. G., Saccomandi G., “Simple shear is not so simple”, Int. J. Non-Linear Mech., 47 (2010), 210–214 | DOI