Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 183-195
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              The paper deals with the problem of determining the stress-strain state of a thermoelastic multicomponent medium with plane boundaries (layer and half-space) taking into account the presence of diffusion fluxes in each medium component. The effect of changes in the concentration and temperature on the stress-strain state of the medium has been studied with the help of a locally equilibrium model of thermoelastic diffusion, which includes the coupled system of equations of motion, heat transfer, and mass transfer. The solution has been found using the Laplace transform, as well as using the Fourier expansion for the layer and the sine-cosine transform for the half-space. The surface Green's functions have been expressed and analyzed. Test calculation has been performed.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mechanical diffusion, multicomponent media, thermoelastic diffusion, integral transforms, Fourier series, Green's functions.
                    
                  
                
                
                @article{UZKU_2018_160_1_a17,
     author = {A. V. Vestyak and S. A. Davydov and A. V. Zemskov and D. V. Tarlakovskii},
     title = {Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {160},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a17/}
}
                      
                      
                    TY - JOUR AU - A. V. Vestyak AU - S. A. Davydov AU - A. V. Zemskov AU - D. V. Tarlakovskii TI - Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 183 EP - 195 VL - 160 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a17/ LA - ru ID - UZKU_2018_160_1_a17 ER -
%0 Journal Article %A A. V. Vestyak %A S. A. Davydov %A A. V. Zemskov %A D. V. Tarlakovskii %T Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 183-195 %V 160 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a17/ %G ru %F UZKU_2018_160_1_a17
A. V. Vestyak; S. A. Davydov; A. V. Zemskov; D. V. Tarlakovskii. Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 183-195. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a17/
