Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 183-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with the problem of determining the stress-strain state of a thermoelastic multicomponent medium with plane boundaries (layer and half-space) taking into account the presence of diffusion fluxes in each medium component. The effect of changes in the concentration and temperature on the stress-strain state of the medium has been studied with the help of a locally equilibrium model of thermoelastic diffusion, which includes the coupled system of equations of motion, heat transfer, and mass transfer. The solution has been found using the Laplace transform, as well as using the Fourier expansion for the layer and the sine-cosine transform for the half-space. The surface Green's functions have been expressed and analyzed. Test calculation has been performed.
Keywords: mechanical diffusion, multicomponent media, thermoelastic diffusion, integral transforms, Fourier series, Green's functions.
@article{UZKU_2018_160_1_a17,
     author = {A. V. Vestyak and S. A. Davydov and A. V. Zemskov and D. V. Tarlakovskii},
     title = {Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {183--195},
     year = {2018},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a17/}
}
TY  - JOUR
AU  - A. V. Vestyak
AU  - S. A. Davydov
AU  - A. V. Zemskov
AU  - D. V. Tarlakovskii
TI  - Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 183
EP  - 195
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a17/
LA  - ru
ID  - UZKU_2018_160_1_a17
ER  - 
%0 Journal Article
%A A. V. Vestyak
%A S. A. Davydov
%A A. V. Zemskov
%A D. V. Tarlakovskii
%T Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 183-195
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a17/
%G ru
%F UZKU_2018_160_1_a17
A. V. Vestyak; S. A. Davydov; A. V. Zemskov; D. V. Tarlakovskii. Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 183-195. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a17/

[1] Knyazeva A. G., Introduction to Thermodynamics of Irreversible Processes. Lectures on Models, Izd. “Ivan Fedorov”, Tomsk, 2014, 172 pp. (In Russian)

[2] Atwa S. Y., “Generalized thermoelastic diffusion with effect of fractional parameter on plane waves temperature-dependent elastic medium”, J. Mater. Chem. Eng., 1:2 (2013), 55–74 | MR

[3] Kumar R., Chawla V., “A study of Green’s functions for three-dimensional problem in thermoelastic diffusion media”, Afr. J. Math. Comput. Sci. Res., 7:7 (2014), 68–78

[4] Othman M. I. A., Elmaklizi Y. D., “2-D problem of generalized magneto- thermoelastic diffusion, with temperature-dependent elastic moduli”, J. Phys., 2:3 (2013), 4–11

[5] Deswal S., Kalkal K. K., Sheoran S. S., “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Phys. B: Condensed Matter., 496 (2016), 57–68 | DOI

[6] Aouadi M., “A generalized thermoelastic diffusion problem for an infinitely long solid cylinder”, Int. J. Math. Math. Sci., 2006 (2006), Art. 25976, 15 pp. | DOI | MR

[7] Elhagary M. A., “A two-dimensional generalized thermoelastic diffusion problem for a half-space subjected to harmonically varying heating”, Acta Mech., 224:12 (2013), 3057–3069 | DOI | MR | Zbl

[8] El-Sayed A. M., “A two-dimensional generalized thermoelastic diffusion problem for a half-space”, Math. Mech. Solids, 21:9 (2016), 1045–1060 | DOI | MR | Zbl

[9] Davydov S. A., Zemskov A. V., Tarlakovskii D. V., “Surface Green's functions in non-stationary problems of thermomechanical diffusion”, Probl. Prochn. Plast., 79:1 (2017), 38–47 (In Russian)

[10] Tarlakovskii D. V., Vestyak V. A., Zemskov A. V., “Dynamic Processes in thermoelectromagnetoelastic and thermoelastodiffusive media”, Encyclopedia of Thermal Stress, v. 2, Springer, Dordrecht–Heidelberg–N.Y.–London, 2014, 1064–1071

[11] Davydov S. A., Zemskov A. V., Tarlakovskii D. V., “An elastic half-space under the action of one-dimensional time-dependent diffusion perturbations”, Lobachevskii J. Math., 36:4 (2015), 503–509 | DOI | MR

[12] Zemskov A. V., Tarlakovskiy D. V., “Two-dimensional nonstationary problem elastic for diffusion an isotropic one-component layer”, J. Appl. Mech. Tech. Phys., 56:6 (2015), 1023–1030 | DOI | MR | Zbl

[13] Davydov S. A., Zemskov A. V., Tarlakovskii D. V., “Two-component elastic diffusion half-space under the influence of time-dependent perturbations”, Ekol. Vestn. Nauchn. Tsentrov Chernomorsk. Ekon. Sotr., 2014, no. 2, 31–38 (In Russian) | MR

[14] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 1, Elementary Functions, Nauka, Moscow, 1981, 797 pp. (In Russian) | MR

[15] Zhuravskii A. M., Handbook on Elliptic Functions, Izd. Akad. Nauk SSSR, Moscow–Leningrad, 1941, 236 pp. (In Russian)