Voir la notice du chapitre de livre
@article{UZKU_2018_160_1_a16,
author = {V. I. Vasilyev and M. V. Vasilyeva and A. V. Grigorev and G. A. Prokopiev},
title = {Mathematical modeling of the two-phase fluid flow in inhomogeneous fractured porous media using the double porosity model and finite element method},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {165--182},
year = {2018},
volume = {160},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a16/}
}
TY - JOUR AU - V. I. Vasilyev AU - M. V. Vasilyeva AU - A. V. Grigorev AU - G. A. Prokopiev TI - Mathematical modeling of the two-phase fluid flow in inhomogeneous fractured porous media using the double porosity model and finite element method JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 165 EP - 182 VL - 160 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a16/ LA - ru ID - UZKU_2018_160_1_a16 ER -
%0 Journal Article %A V. I. Vasilyev %A M. V. Vasilyeva %A A. V. Grigorev %A G. A. Prokopiev %T Mathematical modeling of the two-phase fluid flow in inhomogeneous fractured porous media using the double porosity model and finite element method %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 165-182 %V 160 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a16/ %G ru %F UZKU_2018_160_1_a16
V. I. Vasilyev; M. V. Vasilyeva; A. V. Grigorev; G. A. Prokopiev. Mathematical modeling of the two-phase fluid flow in inhomogeneous fractured porous media using the double porosity model and finite element method. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 165-182. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a16/
[1] Barenblatt G. I., Zheltov Iu. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, J. Appl. Math. Mech., 24:5 (1960), 1286–1303 | Zbl
[2] Bourgeat A., “Homogenized behavior of two-phase flows in naturally fractured reservoirs with uniform fractures distribution”, Comp. Methods Appl. Mech. Eng., 47:1 (1984), 205–216 | DOI | MR | Zbl
[3] Arbogast T., Douglas J. (Jr.), Hornung U., “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21:4 (1990), 823–836 | DOI | MR | Zbl
[4] Gwo J. P., Jardine P. M., Wilson G. V., Yeh G. T., “A multiple-pore-region concept to modeling mass transfer in subsurface media”, J. Hydrol., 164:1 (1995), 217–237 | DOI
[5] Kalinkin A. A., Laevsky Y. M., “Mathematical model of water-oil displacement in fractured porous medium”, Sib. Electron. Math. Rep., 12 (2015), 743–751 | MR | Zbl
[6] Vasilyeva M. V., Vasilyev V. I., Timofeeva T. S., “Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 2, 2016, 243–261 (In Russian) | MR
[7] Vasilyeva M. V., Vasilyev V. I., Krasnikov A. A., Nikiforov D. Ya., “Numerical simulation of single-phase fluid flow in fractured porous media”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 1, 2017, 100–115 (In Russian) | MR
[8] Ginting V., Pereira F., Presho M., Wo S., “Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model”, Comput. Geosci., 15:4 (2011), 691–707 | DOI | MR | Zbl
[9] Salimi H., Bruining J., “Improved prediction of oil recovery from waterflooded fractured reservoirs using homogenization”, SPE Reservoir Eval. Eng., 13:1 (2010), 44–55 | DOI
[10] Vabishchevich P. N., Grigoriev A. V., “Numerical modeling of fluid flow in anisotropic fractured porous media”, Numer. Analys. Appl., 9:1 (2016), 45–56 | DOI | DOI | MR | Zbl
[11] Warren J. E., Root P. J., “The behavior of naturally fractured reservoirs”, Soc. Pet. Eng. J., 3:3 (1963), 245–255 | DOI
[12] Kazemi H., Merrill L. S. (Jr.), Porterfield K. L., Zeman P. R., “Numerical simulation of water-oil flow in naturally fractured reservoirs”, Soc. Pet. Eng. J., 16:6 (1976), 317–326 | DOI
[13] Douglas J. (Jr.), Arbogast T., Paes-Leme P. J., Hensley J. L., Nunes N. P., “Immiscible displacement in vertically fractured reservoirs”, Transp. Porous Media, 12:1 (1993), 73–106 | DOI
[14] Karimi-Fard M., Durlofsky L. J., Aziz K., “An efficient discrete fracture model applicable for general purpose reservoir simulators”, SPE Reservoir Simul. Symp., Soc. Petr. Eng., 2003, SPE-79699-MS, 11 pp. | DOI
[15] Efendiev Y., Lee S., Li G., Yao J., Zhang N., “Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method”, Int. J. Geomath., 6:2 (2015), 141–162 | DOI | MR | Zbl
[16] Akkutlu I. Y., Efendiev Y., Vasilyeva M. V., “Multiscale model reduction for shale gas transport in fractured media”, Comput. Geosci., 20:5 (2016), 953–973 | DOI | MR | Zbl
[17] Karimi-Fard M., Gong B., Durlofsky L. J., “Generation of coarse-scale continuum flow models from detailed fracture characterizations”, Water Resour. Res., 42:10 (2006), Art. W10423, 13 pp. | DOI
[18] Gong B., Karimi-Fard M., Durlofsky L. J., “Upscaling discrete fracture characterizations to dual-porosity, dual-permeability models for efficient simulation of flow with strong gravitational effects”, SPE J., 13:1 (2008), 58–67 | DOI | MR
[19] Lee S. H., Jensen C. L., Lough M. F., “Efficient finite-difference model for flow in a reservoir with multiple length-scale fractures”, SPE J., 5:3 (2000), 1–11 | DOI
[20] Li L., Lee S. H., “Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media”, SPE Reservoir Eval. Eng., 11:4 (2008), 750–758 | DOI
[21] Donea J., Huerta A., Finite Element Methods for Flow Problems, John Wiley Sons, 2003, xii+350 pp. | DOI