The dynamics of a gas bubble in liquid near a rigid surface
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 154-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The axisymmetric dynamics of a gas bubble in liquid near a plane rigid surface (wall) during its expansion and subsequent compression with the transition to the toroidal phase of motion has been studied. It has been assumed that the liquid is ideal incompressible, its flow being potential. The position of the bubble contour and the potential on it have been found by the Euler method, the fluid velocity on the contour has been derived by the boundary element method. The shape of the bubble, its internal pressure, liquid velocity, and pressure around the bubble have been determined. The pressure profiles on the wall and along the axis of symmetry have been presented. It has been found that at an initial distance $d_0$ between the bubble and the wall less than a certain value $d^*$ the thickness of the liquid layer between the bubble and the wall during bubble compression until the moment of transition to the toroidal phase of the motion decreases, while at the initial distance $d_0$ greater than $d^*$ it increases. In addition, the liquid layer thickness at the moment of transition to the toroidal phase increases with increasing the initial distance $d_0$ between the bubble and the wall. It has been shown that in the toroidal phase of bubble dynamics the maximum pressure in the liquid near the bubble is located in the region of impact of the cumulative jet on the surface of the liquid layer between the bubble and the wall. In this case, the action of the jet can lead to the appearance of local deformations of the bubble surface (a splash inside the bubble) moving away from the axis of symmetry as the jet displaces the liquid between the bubble and the wall.
Keywords: cavitation bubble, toroidal bubble, potential liquid flow, boundary element method, distance from bubble to wall.
@article{UZKU_2018_160_1_a15,
     author = {A. A. Aganin and L. A. Kosolapova and V. G. Malakhov},
     title = {The dynamics of a~gas bubble in liquid near a~rigid surface},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {154--164},
     year = {2018},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a15/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - L. A. Kosolapova
AU  - V. G. Malakhov
TI  - The dynamics of a gas bubble in liquid near a rigid surface
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 154
EP  - 164
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a15/
LA  - ru
ID  - UZKU_2018_160_1_a15
ER  - 
%0 Journal Article
%A A. A. Aganin
%A L. A. Kosolapova
%A V. G. Malakhov
%T The dynamics of a gas bubble in liquid near a rigid surface
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 154-164
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a15/
%G ru
%F UZKU_2018_160_1_a15
A. A. Aganin; L. A. Kosolapova; V. G. Malakhov. The dynamics of a gas bubble in liquid near a rigid surface. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 154-164. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a15/

[1] Terwisga T. J. C., Wijngaarden E., Bosschers J., Kuiper G., “Cavitation research on ship propellers: A review of achievements and challenges”, Sixth Int. Symp. on Cavitation, Wageningen, The Netherlands, 2006, 1–14

[2] Ohl C.-D., Arora M., Ikink R., de Jong N., Versluis M., Delius M., Lohse D., “Sonoporation from jetting cavitation bubbles”, Biophys. J., 91:11 (2006), 4285–4295 | DOI

[3] Kieser B., Phillion R., Smith S., McCartney T., “The application of industrial scale ultrasonic cleaning to heat exchangers”, Proc. Int. Conf. on Heat Exchanger Fouling and Cleaning, eds. M. R. Malayeri, H. Muller-Steinhagen, A. P. Watkinson, 2011, 336–338

[4] Singh R., Tiwari S. K., Mishra S. K., “Cavitation erosion in hydraulic turbine components and mitigation by coatings: Current status and future needs”, J. Mater. Eng. Perform., 21:7 (2012), 1539–1551 | DOI

[5] Voinov O. V., Voinov V. V., “Numerical method of calculating nonsteady motions of an ideal incompressible liquid with free surfaces”, Dokl. Akad. Nauk SSSR, 221:3 (1975), 559–562 (In Russian) | Zbl

[6] Voinov O. V., Voinov V. V., “Scheme of collapse of a cavitation bubble near a wall and formation of a cumulative jet”, Dokl. Akad. Nauk SSSR, 227:1 (1976), 63–66 (In Russian)

[7] Blake J. R., Taib B. B., Doherty G., “Transient cavities near boundaries. Part 1. Rigid boundary”, J. Fluid Mech., 170 (1986), 479–497 | DOI | Zbl

[8] Blake J. R., Gibson D. C., “Cavitation bubbles near boundaries”, Ann. Rev. Fluid Mech., 19 (1987), 99–123 | DOI

[9] Blake J. R., Robinson P. B., Shima A., Tomita Y., “Interaction of two cavitation bubbles with a rigid boundary”, J. Fluid Mech., 255 (1993), 707–721 | DOI | MR

[10] Shervani-Tabar M. T., Hajizadeh Aghdam A., Khoo B. C., Farhangmehr V., Farzaneh B., “Numerical analysis of a cavitation bubble in the vicinity of an elastic membrane”, Fluid Dyn. Res., 45:5 (2013), Art. 055503, 14 pp. | DOI | MR

[11] Klaseboer E., Khoo B. C., “An oscillating bubble near an elastic material”, J. Appl. Phys., 96:10 (2004), 5808–5818 | DOI

[12] Zhang Z.-Y., Zhang H.-S., “Surface tension effects on the behavior of a cavity growing, collapsing and rebounding near a rigid wall”, Phys. Rev. E, 70:5, Pt. 2 (2004), Art. 056310, 15 pp. | DOI | MR

[13] Best J. P., “The rebound of toroidal bubbles”, Bubble Dynamics and Interface Phenomena, eds. J. R. Blake, J. M. Boulton-Stone, N. H. Thomas, Springer, Netherlands, 1994, 405–412 | DOI | MR

[14] Wang Q. X., Yeo K. S., Khoo B. C., Lam K. Y., “Nonlinear interaction between gas bubble and free surface”, Comput. Fluids, 25:7 (1996), 607–628 | DOI | Zbl

[15] Brujan E. A., Keen G. S., Vogel A., Blake J. R., “The final stage of the collapse of a cavitation bubble close to a rigid boundary”, Phys. Fluids, 14:1 (2002), 85–92 | DOI

[16] Pearson A., Blake J. R., Otto S. R., “Jets in bubbles”, J. Eng. Math., 48:3–4 (2004), 391–412 | DOI | MR | Zbl

[17] Lee M., Klaseboer E., Khoo B. C., “On the boundary integral method for the rebounding bubble”, J. Fluid Mech., 570 (2007), 407–429 | DOI | MR | Zbl

[18] Aganin A. A., Kosolapova L. A., Malakhov V. G., “Numerical simulation of the evolution of a gas bubble in a liquid near a wall”, Math. Models Comput. Simul., 10:1 (2018), 89–98 | DOI | MR

[19] Tong R. P., Schiffers W. P., Shaw S. J., Blake J. R., Emmony D. C., “The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary”, J. Fluid Mech., 380 (1999), 339–361 | DOI | Zbl

[20] Jayaprakash A., Hsiao C. T., Chahine G., “Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall”, J. Fluids Eng., 134:3 (2012), Art. 031301, 12 pp. | DOI

[21] Best J. P., The dynamics of underwater explosions, PhD Thesis, Univ. of Wollongong, Australia, 1991, 257 pp. URL: http://ro.uow.edu.au/theses/1563/

[22] Philipp A., Lauterborn W., “Cavitation erosion by single laser-produced bubbles”, J. Fluid Mech., 361 (1998), 75–116 | DOI | Zbl