@article{UZKU_2018_160_1_a15,
author = {A. A. Aganin and L. A. Kosolapova and V. G. Malakhov},
title = {The dynamics of a~gas bubble in liquid near a~rigid surface},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {154--164},
year = {2018},
volume = {160},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a15/}
}
TY - JOUR AU - A. A. Aganin AU - L. A. Kosolapova AU - V. G. Malakhov TI - The dynamics of a gas bubble in liquid near a rigid surface JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2018 SP - 154 EP - 164 VL - 160 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a15/ LA - ru ID - UZKU_2018_160_1_a15 ER -
%0 Journal Article %A A. A. Aganin %A L. A. Kosolapova %A V. G. Malakhov %T The dynamics of a gas bubble in liquid near a rigid surface %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2018 %P 154-164 %V 160 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a15/ %G ru %F UZKU_2018_160_1_a15
A. A. Aganin; L. A. Kosolapova; V. G. Malakhov. The dynamics of a gas bubble in liquid near a rigid surface. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 154-164. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a15/
[1] Terwisga T. J. C., Wijngaarden E., Bosschers J., Kuiper G., “Cavitation research on ship propellers: A review of achievements and challenges”, Sixth Int. Symp. on Cavitation, Wageningen, The Netherlands, 2006, 1–14
[2] Ohl C.-D., Arora M., Ikink R., de Jong N., Versluis M., Delius M., Lohse D., “Sonoporation from jetting cavitation bubbles”, Biophys. J., 91:11 (2006), 4285–4295 | DOI
[3] Kieser B., Phillion R., Smith S., McCartney T., “The application of industrial scale ultrasonic cleaning to heat exchangers”, Proc. Int. Conf. on Heat Exchanger Fouling and Cleaning, eds. M. R. Malayeri, H. Muller-Steinhagen, A. P. Watkinson, 2011, 336–338
[4] Singh R., Tiwari S. K., Mishra S. K., “Cavitation erosion in hydraulic turbine components and mitigation by coatings: Current status and future needs”, J. Mater. Eng. Perform., 21:7 (2012), 1539–1551 | DOI
[5] Voinov O. V., Voinov V. V., “Numerical method of calculating nonsteady motions of an ideal incompressible liquid with free surfaces”, Dokl. Akad. Nauk SSSR, 221:3 (1975), 559–562 (In Russian) | Zbl
[6] Voinov O. V., Voinov V. V., “Scheme of collapse of a cavitation bubble near a wall and formation of a cumulative jet”, Dokl. Akad. Nauk SSSR, 227:1 (1976), 63–66 (In Russian)
[7] Blake J. R., Taib B. B., Doherty G., “Transient cavities near boundaries. Part 1. Rigid boundary”, J. Fluid Mech., 170 (1986), 479–497 | DOI | Zbl
[8] Blake J. R., Gibson D. C., “Cavitation bubbles near boundaries”, Ann. Rev. Fluid Mech., 19 (1987), 99–123 | DOI
[9] Blake J. R., Robinson P. B., Shima A., Tomita Y., “Interaction of two cavitation bubbles with a rigid boundary”, J. Fluid Mech., 255 (1993), 707–721 | DOI | MR
[10] Shervani-Tabar M. T., Hajizadeh Aghdam A., Khoo B. C., Farhangmehr V., Farzaneh B., “Numerical analysis of a cavitation bubble in the vicinity of an elastic membrane”, Fluid Dyn. Res., 45:5 (2013), Art. 055503, 14 pp. | DOI | MR
[11] Klaseboer E., Khoo B. C., “An oscillating bubble near an elastic material”, J. Appl. Phys., 96:10 (2004), 5808–5818 | DOI
[12] Zhang Z.-Y., Zhang H.-S., “Surface tension effects on the behavior of a cavity growing, collapsing and rebounding near a rigid wall”, Phys. Rev. E, 70:5, Pt. 2 (2004), Art. 056310, 15 pp. | DOI | MR
[13] Best J. P., “The rebound of toroidal bubbles”, Bubble Dynamics and Interface Phenomena, eds. J. R. Blake, J. M. Boulton-Stone, N. H. Thomas, Springer, Netherlands, 1994, 405–412 | DOI | MR
[14] Wang Q. X., Yeo K. S., Khoo B. C., Lam K. Y., “Nonlinear interaction between gas bubble and free surface”, Comput. Fluids, 25:7 (1996), 607–628 | DOI | Zbl
[15] Brujan E. A., Keen G. S., Vogel A., Blake J. R., “The final stage of the collapse of a cavitation bubble close to a rigid boundary”, Phys. Fluids, 14:1 (2002), 85–92 | DOI
[16] Pearson A., Blake J. R., Otto S. R., “Jets in bubbles”, J. Eng. Math., 48:3–4 (2004), 391–412 | DOI | MR | Zbl
[17] Lee M., Klaseboer E., Khoo B. C., “On the boundary integral method for the rebounding bubble”, J. Fluid Mech., 570 (2007), 407–429 | DOI | MR | Zbl
[18] Aganin A. A., Kosolapova L. A., Malakhov V. G., “Numerical simulation of the evolution of a gas bubble in a liquid near a wall”, Math. Models Comput. Simul., 10:1 (2018), 89–98 | DOI | MR
[19] Tong R. P., Schiffers W. P., Shaw S. J., Blake J. R., Emmony D. C., “The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary”, J. Fluid Mech., 380 (1999), 339–361 | DOI | Zbl
[20] Jayaprakash A., Hsiao C. T., Chahine G., “Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall”, J. Fluids Eng., 134:3 (2012), Art. 031301, 12 pp. | DOI
[21] Best J. P., The dynamics of underwater explosions, PhD Thesis, Univ. of Wollongong, Australia, 1991, 257 pp. URL: http://ro.uow.edu.au/theses/1563/
[22] Philipp A., Lauterborn W., “Cavitation erosion by single laser-produced bubbles”, J. Fluid Mech., 361 (1998), 75–116 | DOI | Zbl