A stochastic model for the dynamics of electromagnetic waves connected to each other on the mirror
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 7-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper develops stochastic differential equations serving as the basis for derivation of master equations for microcavity photons pumped with either classic or quantized contracted fields. The interaction operator on the microcavity mirror is derived from the non-resonant field operator interacting with the quantum particle by means of the algebraic perturbation theory, with allowance for various interference processes.
Mots-clés : Markovian approximation
Keywords: quantum stochastic differential equation, master equation, nonresonant interaction.
@article{UZKU_2018_160_1_a0,
     author = {A. M. Basharov},
     title = {A stochastic model for the dynamics of electromagnetic waves connected to each other on the mirror},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {7--16},
     year = {2018},
     volume = {160},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a0/}
}
TY  - JOUR
AU  - A. M. Basharov
TI  - A stochastic model for the dynamics of electromagnetic waves connected to each other on the mirror
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2018
SP  - 7
EP  - 16
VL  - 160
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a0/
LA  - ru
ID  - UZKU_2018_160_1_a0
ER  - 
%0 Journal Article
%A A. M. Basharov
%T A stochastic model for the dynamics of electromagnetic waves connected to each other on the mirror
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2018
%P 7-16
%V 160
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a0/
%G ru
%F UZKU_2018_160_1_a0
A. M. Basharov. A stochastic model for the dynamics of electromagnetic waves connected to each other on the mirror. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 160 (2018) no. 1, pp. 7-16. http://geodesic.mathdoc.fr/item/UZKU_2018_160_1_a0/

[1] Gardiner C. W., Collet M. J., “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation”, Phys. Rev. A, 31:6 (1985), 3761–3774 | DOI | MR

[2] Gardiner C. W., Zoller P., Quantum noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer-Verlag, Berlin, 2000, 438 pp. | MR | Zbl

[3] Basharov A. M., “Stark interaction of identical particles with the vacuum electromagnetic field as quantum Poisson process suppressing collective spontaneous emission”, Phys. Rev. A, 84:1 (2011), 013801, 013801-1–013801-14 | DOI

[4] Bonitz M., Quantum Kinetic Theory, B. G. Teubner, Stuttgart, 1989

[5] Kuznetsov D. V., Roerich Vl. K., Gladush M. G., “Local field and radiative relaxation rate in a dielectric medium”, J. Exp. Theor. Phys., 113:4 (2011), 647–658 | DOI

[6] Pichler H., Zoller P., “Photonic circuits with time delays and quantum feedback”, Phys. Rev. Lett., 116:9 (2016), Art. 093601, 093601-1–093601-6 | DOI

[7] Maimistov A. I., Basharov A. M., Nonlinear optical waves, Springer, Netherlands, 1999, XIV+656 pp. | MR

[8] Basharov A. M., “Quantum theory of open systems based on stochastic differential equations of generalized Langevin (non-Wiener) type”, J. Exp. Theor. Phys., 115:3 (2012), 371–391 | DOI

[9] Basharov A. M., “A theory of open systems based on stochastic differential equations”, Opt. Spectrosc., 116:4 (2014), 495–503 | DOI | DOI