On a computable presentation of low linear orders
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 518-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

R. Downey in the review paper of 1998 stated the research program on studying and description of sufficient conditions of computable representability of linear orders, namely, the problem of description of the order type $P$ such that, for any low linear order $L$, from $P(L)$ it follows that $L$ has a computable presentation. This paper is a part of the program initiated by R. Downey. We have shown that each low linear order with $\eta$ condensation and no infinite strongly $\eta$-like interval has a computable presentation via a $\mathbf0''$-computable isomorphism. The countable linear order is called $\eta$-like if there exists some natural number $k$ such that each maximal block of the order has power no more than $k$. We have also proven that the above-discussed result does not hold for $\mathbf0'$-computable isomorphism instead of $\mathbf0''$-computable. Namely, we have constructed a low linear order $L$ with $\eta$ condensation and no infinite strongly $\eta$-like interval such that $L$ is not $\mathbf0'$-computably isomorphic to a computable one.
Keywords: linear order, computable presentation, low degree, strongly $\eta$-like linear order.
@article{UZKU_2017_159_4_a7,
     author = {A. N. Frolov},
     title = {On a computable presentation of low linear orders},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {518--528},
     year = {2017},
     volume = {159},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a7/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - On a computable presentation of low linear orders
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 518
EP  - 528
VL  - 159
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a7/
LA  - ru
ID  - UZKU_2017_159_4_a7
ER  - 
%0 Journal Article
%A A. N. Frolov
%T On a computable presentation of low linear orders
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 518-528
%V 159
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a7/
%G ru
%F UZKU_2017_159_4_a7
A. N. Frolov. On a computable presentation of low linear orders. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 518-528. http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a7/

[1] Soare R. I., Recursively Enumerable Sets and Degrees, Springer-Verlag, Heidelberg, 1987, 437 pp. | MR | Zbl

[2] Downey R. G., Jockusch C. G. (Jr.), “Every low Boolean algebra is isomorphic to a recursive one”, Proc. Am. Math. Soc., 122:3 (1994), 871–880 | DOI | MR | Zbl

[3] Thurber J., “Every $low_2$ Boolean algebra has a recursive copy”, Proc. Am. Math. Soc., 123:12 (1995), 3859–3866 | MR | Zbl

[4] Knight J. F., Stob M., “Computable Boolean algebras”, J. Symb. Logic, 65:4 (2000), 1605–1623 | DOI | MR | Zbl

[5] Harris K., Montalban A., “Boolean algebra approximations”, Trans. Am. Math. Soc., 366:10 (2014), 5223–5256 | DOI | MR | Zbl

[6] Jockusch C. G., Soare R. I., “Degrees of orderings not isomorphic to recursive linear orderings ”, Ann. Pure Appl. Logic, 52:1–2 (1991), 39–64 | DOI | MR | Zbl

[7] Downey R. G., Moses M. F., “On choice sets and strongly nontrivial self-embeddings of recursive linear orderings”, Z. Math. Logik Grund. Math., 35 (1989), 237–246 | DOI | MR | Zbl

[8] Downey R. G., “Computability theory and linear orderings”, Handbook of Recursive Mathematics, eds. Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, Elsevier, Amsterdam, 1998, 823–976 | MR | Zbl

[9] Frolov A. N., “$\Delta_2^0$-copies of linear orderings”, Algebra logic, 45:3 (2006), 201–209 | DOI | MR | Zbl

[10] Frolov A. N., “Linear orderings of low degree”, Sib. Math. J., 51:5 (2010), 913–925 | DOI | MR | Zbl

[11] Frolov A. N., “Low linear orderings”, J. Logic Comput., 22:4 (2012), 745–754 | DOI | MR | Zbl

[12] Frolov A., “Scattered linear orderings with no computable presentation”, Lobachevskii J. Math., 35:1 (2014), 19–22 | DOI | MR | Zbl

[13] Kach A., Montalbán A., “Cuts of linear orders”, Order, 28:3 (2011), 593–600 | DOI | MR | Zbl

[14] Alaev P. E., Frolov A. N., Thurber J., “Computability on linear orderings enriched with predicates”, Algebra Logic, 48:5 (2009), 313–320 | DOI | MR | Zbl

[15] Frolov A., Zubkov M., “Increasing $\eta$-representable degrees”, Math. Logic Q, 55:6 (2009), 633–636 | DOI | MR | Zbl

[16] Kach A., “Computable shuffle sums of ordinals”, Archive for Math. Logic, 47:3 (2008), 211–219 | DOI | MR | Zbl

[17] Montalban A., “Notes on the jump of a structure”, Mathematical Theory and Computational Practice (CiE 2009), Lecture Notes in Computer Science, 5635, eds. Ambos-Spies K., Lowe B., Merkle W., Springer, Berlin–Heidelberg, 2009, 372–378 | DOI | MR | Zbl