Keywords: rectilinear motion of sphere, quasi-stationary force, history force, added mass force, numerical simulation.
@article{UZKU_2017_159_4_a3,
author = {A. N. Nuriev and O. N. Zaitseva and A. I. Yunusova},
title = {Numerical investigation of the history and added mass forces acting on a~spherical micro-particle in rectilinear motion in the case of finite {Reynolds} numbers},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {458--472},
year = {2017},
volume = {159},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a3/}
}
TY - JOUR AU - A. N. Nuriev AU - O. N. Zaitseva AU - A. I. Yunusova TI - Numerical investigation of the history and added mass forces acting on a spherical micro-particle in rectilinear motion in the case of finite Reynolds numbers JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2017 SP - 458 EP - 472 VL - 159 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a3/ LA - ru ID - UZKU_2017_159_4_a3 ER -
%0 Journal Article %A A. N. Nuriev %A O. N. Zaitseva %A A. I. Yunusova %T Numerical investigation of the history and added mass forces acting on a spherical micro-particle in rectilinear motion in the case of finite Reynolds numbers %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2017 %P 458-472 %V 159 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a3/ %G ru %F UZKU_2017_159_4_a3
A. N. Nuriev; O. N. Zaitseva; A. I. Yunusova. Numerical investigation of the history and added mass forces acting on a spherical micro-particle in rectilinear motion in the case of finite Reynolds numbers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 458-472. http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a3/
[1] Van Overbrüggen T., Klaas M., Soria J., Schröder W., “Experimental analysis of particle sizes for PIV measurements”, Meas. Sci. Technol., 27:9 (2016), Art. 094009, 10 pp.
[2] Mei R., Adrian R., “Flow past a sphere with an oscillation in the free-stream velocity, and unsteady drag at finite Reynolds number”, J. Fluid Mech., 237 (1992), 323–341 | DOI | Zbl
[3] Mei R., “History force on a sphere due to a step change in the free-stream velocity”, Int. J. Multiphase Flow, 19:3 (1993), 509–525 | DOI | Zbl
[4] Lawrence C. J., Mei R., “Long-time behaviour of the drag on a body in impulsive motion”, J. Fluid Mech., 283 (1995), 301–327 | DOI | MR
[5] Mei R., “Velocity fidelity of flow tracer particles”, Experiments in Fluids, 22:1 (1996), 1–13 | DOI
[6] Lighthill M. J., “On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers”, Comm. Pure Appl. Math., 5:2 (1952), 109–118 | DOI | MR | Zbl
[7] Egorov A. G., Zakharova O. S., “The optimal quasi-stationary motion of a vibration-driven robot in a viscous medium”, Russ. Math., 56:2 (2012), 50–55 | DOI | MR | Zbl
[8] Egorov A. G., Zakharova O. S., “The energy-optimal motion of a vibration-driven robot in a medium with a inherited law of resistance”, J. Comput. Syst. Sci. Int., 54:3 (2015), 495–503 | DOI | MR | Zbl
[9] Childress S., Spagnolie S. E., Tokieda T. A., “A bug on a raft: Recoil locomotion in a viscous fluid”, J. Fluid Mech., 669 (2011), 527–556 | DOI | MR | Zbl
[10] Nuriev A., Zakharova O., “The optimal control of a multi-mass vibration propulsion system in a viscous incompressible fluid”, Proc. 7th Eur. Congress on Computational Methods in Applied Sciences and Engineering, v. 4, 2016, 7121–7129 | DOI
[11] Basset A. B., A treatise on hydrodynamics, with numerous examples, v. 2, Deighton, Bell and Co., Cambridge, 1888, 368 pp. | MR | Zbl
[12] Chang E. J., Maxey M. R., “Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion”, J. Fluid Mech., 277 (1994), 347–379 | DOI | Zbl
[13] Chang E. J., Maxey M. R., “Unsteady flow about a sphere at low to moderate Reynolds number. Part 2. Accelerated motion”, J. Fluid Mech., 303 (1995), 133–153 | DOI | Zbl
[14] Nuriev A. N., Zaitseva O. N., “Solving the problem of oscillatory motion of a cylinder in a viscous medium using the OpenFOAM package”, Vestn. Kazan. Tekhnol. Univ., 16:8 (2013), 116–123 (In Russian)
[15] Egorov A. G., Kamalutdinov A. M., Nuriev A. N., Paimushin V. N., “Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 2. Aerodynamic component of damping”, Mech. Compos. Mater., 50:3 (2014), 267–278 | DOI
[16] Nuriev A. N., Zakharova O. S., “Numerical simulation of the motion of a wedge-shaped two-mass vibration-driven robot in a viscous fluid”, Vychisl. Mekh. Sploshnykh Sred, 9:1 (2016), 5–15 (In Russian)
[17] Jasak H., Weller H. G., Gosman A. D., “High resolution NVD differencing scheme for arbitrarily unstructured meshes”, Int. J. Numer. Meth. Fluids, 31:2 (1999), 431–449 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[18] Jasak H., Error analysis and estimation for the finite volume method with applications to fluid flows, Ph. D. Thesis, Univ. London, Imperial College, London, 1996, 394 pp.
[19] Issa R. I., “Solution of the implicitly discretised fluid flow equations by operator-splitting”, J. Comput. Phys., 62:1 (1986), 40–65 | DOI | MR | Zbl
[20] Behrens T., OpenFOAM's basic solvers for linear systems of equations: Solvers, preconditioners, smoothers, Techn. Report, Techn. Univ. Denmark, Denmark, 2009, 18 pp.
[21] Le Clair B. P., Hamielec A. E., Pruppracher H. R., “A numerical study of the drag on a sphere at low and intermediate Reynolds numbers”, J. Atmos. Sci., 27 (1970), 308–315 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[22] Dennis S. C. R., Walker J. D. A., “Calculation of the steady flow past a sphere at low and moderate Reynolds numbers”, J. Fluid Mech., 48:4 (1971), 771–789 | DOI | Zbl
[23] Johnson T., Patel V., “Flow past a sphere up to a Reynolds number of 300”, J. Fluid Mech., 378 (1999), 19–70 | DOI
[24] Schlichting H., Boundary Layer Theory, McGraw-Hill, N.Y., 1979, 817 pp. | MR | Zbl
[25] Dennis S. C. R., Walker J. D. A., “Numerical solutions for time-dependent flow past an impulsively started sphere”, Phys. Fluids, 15:4 (1972), 517–525 | DOI | Zbl
[26] Rivero M., Magnaudet J., Fabre J., “Quelques resultants nouveaux concernant les forces exercees sur une inclusion spherique par en icoulement accelkre”, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers, 312:13 (1991), 1499–1506 (In French) | Zbl
[27] Wakaba L., Balachandar S., “On the added mass force at finite Reynolds and acceleration numbers”, Theor. Comput. Fluid Dyn., 21:2 (2007), 147–153 | DOI | Zbl