Modification of the Scharfetter–Gummel method for calculating the flux of charged particles for simulation of a radio-frequency capacitive coupled discharge
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 444-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A numerical method of solving of nonstationary convection-diffusion equation for charged particle densities in capacitive coupled RF discharge is presented. The method allows us to calculate the particle concentration together with the flux density simultaneously at very rapid changes of particle density and electrical field in the electrode sheath. The method is a modification of the Scharfetter–Gummel algorithm. Firstly, implicit difference approximation of the equation constructed by the integro-interpolation method is used for calculating the charged particles density. Then the flux density of charged particles is calculated. Our modification allows to carry out the calculation at milder restriction on the time step than the Courant condition. In addition, diffusion coefficient may be variable unlike with the original Scharfetter–Gummel algorithm.
Keywords: mathematical modeling, radio-frequency capacitive coupled discharge, modified Scharfetter–Gummel method, flux density of charged particles.
Mots-clés : convection-diffusion equation
@article{UZKU_2017_159_4_a2,
     author = {V. S. Zheltukhin and M. S. Fadeeva and V. Ju. Chebakova},
     title = {Modification of the {Scharfetter{\textendash}Gummel} method for calculating the flux of charged particles for simulation of a~radio-frequency capacitive coupled discharge},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {444--457},
     year = {2017},
     volume = {159},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a2/}
}
TY  - JOUR
AU  - V. S. Zheltukhin
AU  - M. S. Fadeeva
AU  - V. Ju. Chebakova
TI  - Modification of the Scharfetter–Gummel method for calculating the flux of charged particles for simulation of a radio-frequency capacitive coupled discharge
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 444
EP  - 457
VL  - 159
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a2/
LA  - ru
ID  - UZKU_2017_159_4_a2
ER  - 
%0 Journal Article
%A V. S. Zheltukhin
%A M. S. Fadeeva
%A V. Ju. Chebakova
%T Modification of the Scharfetter–Gummel method for calculating the flux of charged particles for simulation of a radio-frequency capacitive coupled discharge
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 444-457
%V 159
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a2/
%G ru
%F UZKU_2017_159_4_a2
V. S. Zheltukhin; M. S. Fadeeva; V. Ju. Chebakova. Modification of the Scharfetter–Gummel method for calculating the flux of charged particles for simulation of a radio-frequency capacitive coupled discharge. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 444-457. http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a2/

[1] Polak L. S., Sinyarev G. B., Slovetsky D. I. et al., Plasma Chemistry, eds. Polak L. S., Lebedev Yu. A., Nauka, Novosibirsk, 1991, 325 pp. (In Russian)

[2] Berdichevskii M. G., Marusin V. V., Coating, Etching, and Modifying Polymers Using Low-Enthalpy Non-Equilibrium Plasma: Review, Inst. Teplofiz., Novosibirsk, 1993, 107 pp. (In Russian)

[3] Gadzhiev M. K., Isakaev E. K., Tyuftyaev A. S., Yusupov D. I., “A high-power low-temperature air plasma generator with a divergent channel of the output electrode”, Techn. Phys. Lett., 42:1 (2016), 79–81 | DOI

[4] Badriev I. B., Zheltukhin V. S., Chebakova V. Yu., “On solving of some nonlinear boundary and initial boundary value problems”, Proc. XXII Int. Symp. “Dynamic and Technological Problems of Mechanics of Constructions and Continuous Media” Dedicated to A. G. Gorshkov, TRP, Moscow, 2016, 31–33 (In Russian)

[5] Karengin A. G., “Physics and Technology of Low-Temperature Plasma”, Izd. Tomsk. Politekh. Univ., Tomsk, 2008, 129 pp. (In Russian)

[6] Lebedev Yu. A., Tatarinov A. V., “Electrodynamics of microwaves in a coaxial non-regular waveguide partly filled with plasma”, Plasma Sources Sci. Technol., 13:1 (2004), 1–7 | DOI

[7] Amirov R. Kh., Isakaev E. Kh., Shavelkina M. B., Yusupov D. I., Shatalova T. B., Emirov R. M., “Plasma-jet synthesis of carbon nanostructures and a device for its implementation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 4, 2014, 112–119 (In Russian)

[8] Lebedev Yu. A., Tatarinov A. V., Titov A. Yu., Epstein I. L., “Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 4, 2014, 120–132 (In Russian)

[9] Wang H.-B., Sun W.-T., Lia H.-P., Bao Ch.-Y., “Discharge characteristics of atmospheric-pressure radio-frequency glow discharges with argon/nitrogen”, Appl. Phys. Lett., 89:16 (2006), Art. 161504, 161504-1–161504-3 | DOI

[10] Lebedev Yu. A., “Comparison of the Non-Equilibrium Plasma of Self-Maintained Electrical Discharges”, Radio-Frequency Discharge in Wave Fields, Samara, 1990, 25–62 (In Russian)

[11] Abdullin I. Sh., Zheltukhin V. S., Chebakova V. Yu., “Radio-frequency capacitive coupled discharge: Modeling (review)”, Vestn. Kazan. Tekhnol. Univ., 17:23 (2014), 9–14 (In Russian)

[12] Tikhonova N. V., Zheltukhin V. S., Chebakova V. Yu., Borodaev I. A., “Mathematical model of radio frequency plasma processing of multilayer materials of shoe uppers”, Vestn. Kazan. Tekhnol. Univ., 15:17 (2012), 36–39 (In Russian)

[13] Goedheer W. J., “Lecture notes on radio-frequency discharges, dc potentials, ion and electron energy distributions”, Plasma Sources Sci. Technol., 9 (2000), 507–516 | DOI

[14] Raizer Y. P., Shneider M. N., Yatsenko N. A., Radio-Frequency Capacitive Discharges, CRC Press, Boca Raton, Fla., 1995, 304 pp.

[15] Raizer Yu. P., Gas Discharge Physics, Intellekt, Dolgoprudnyi, 2009, 736 pp. (In Russian)

[16] Chebert P., Braithwaite N., Physics of radio-frequency plasmas, Cambridge Univ. Press, Cambridge, 2011, 386 pp.

[17] Badriev I. B., Chebakova V. Yu., “Mathematical simulation of low-temperature RF plasma in argon”, Mathematical Modeling and Boundary Value Problems, Proc. 10th All-Russ. Sci. Conf. with Int. Participation, v. 2, Samara, 2016, 17–21 (In Russian)

[18] Badriev I. B., Chebakova V. Y., Zheltukhin V. S., “Capacitive coupled RF discharge: modelling at the local statement of the problem”, J. Phys.: Conf. Ser., 789:1 (2017), Art. 012004, 4 pp.

[19] Badriev I. B., Zheltukhin V. S., Chebakova V. Yu., “Numerical study of low-temperature RF plasma in argon at elevated pressures”, Proc. XI Int. Conf. on Non-Equilibrium Processes in Nozzles and Jets (NPNJ'2016), Moscow, 2016, 477–479 (In Russian)

[20] Scharfetter D. L., Gummel H. K., “Large-signal analysis of a silicon Read diode oscillator”, IEEE Trans. Electron Devices, 16:1 (1969), 64–77 | DOI

[21] Kulikovsky A. A., “A more accurate Scharfetter–Gummel algorithm of electron transport for semiconductor and gas discharge simulation”, J. Comput. Phys., 119:1 (1995), 149–155 | DOI | Zbl

[22] Degtyarev L. M., Favorskii A. P., “Flow variant of the sweep method for difference problems with strongly varying coefficients”, USSR Comput. Math. Math. Phys., 9:1 (1969), 285–294 | DOI | MR | Zbl

[23] Golshtein E. G., Tretyakov N. V., Modified Lagrangians, Nauka, Moscow, 1989, 400 pp. (In Russian) | MR

[24] Badriev I. B., Zadvornov O. A., “Iterative methods for solving variational inequalities of the second kind with inversely strongly monotone operators”, Russ. Math., 47:1 (2003), 18–26 | MR | Zbl

[25] Badriev I. B., Zadvornov O. A., “On the convergence of the dual-type iterative method for mixed variational inequalities”, Differ. Equations, 42:8 (2006), 1180–1188 | MR | Zbl

[26] Glowinski R., Le Tallec P., Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, PA, 1989, 292 pp. | MR | Zbl

[27] Chebakova V. Yu., “Numerical simulation of the high-frequency capacitive discharge”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 2, 2015, 126–140 (In Russian) | MR

[28] Chebakova V. Yu., “Modeling of radio-frequency capacitive discharge under atmospheric pressure in argon”, Lobachevskii J. Math., 38:6 (2017), 1165–1178 | DOI | MR

[29] Samarskii A. A., Gulin A. V., Numerical Methods, Fizmatlit, Moscow, 1989, 432 pp. (In Russian) | MR

[30] Samarskii A. A., Vabishchevich P. N., Numerical Methods for Solving Convection-Diffusion Problems, Editorial URSS, Moscow, 1999, 248 pp. (In Russian)

[31] Lisovskii V. A., “Features of the $\alpha$-$\gamma$ transition in a low-pressure rf argon discharge”, Tech. Phys., 43:5 (1998), 526–534 | DOI