Mots-clés : axial compression, bifurcation point
@article{UZKU_2017_159_4_a0,
author = {I. B. Badriev and M. V. Makarov and V. N. Paimushin and S. A. Kholmogorov},
title = {The axisymmetric problems of geometrically nonlinear deformation and stability of a~sandwich cylindrical shell with contour reinforcing beams},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {395--428},
year = {2017},
volume = {159},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a0/}
}
TY - JOUR AU - I. B. Badriev AU - M. V. Makarov AU - V. N. Paimushin AU - S. A. Kholmogorov TI - The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2017 SP - 395 EP - 428 VL - 159 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a0/ LA - ru ID - UZKU_2017_159_4_a0 ER -
%0 Journal Article %A I. B. Badriev %A M. V. Makarov %A V. N. Paimushin %A S. A. Kholmogorov %T The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2017 %P 395-428 %V 159 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a0/ %G ru %F UZKU_2017_159_4_a0
I. B. Badriev; M. V. Makarov; V. N. Paimushin; S. A. Kholmogorov. The axisymmetric problems of geometrically nonlinear deformation and stability of a sandwich cylindrical shell with contour reinforcing beams. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 4, pp. 395-428. http://geodesic.mathdoc.fr/item/UZKU_2017_159_4_a0/
[1] Aleksandrov A. Ya., Bryukker L. E., Kurshin L. M., Prusakov A. P., Calculation of Sandwich Panels, Oborongiz, Moscow, 1960, 270 pp. (In Russian)
[2] Reddy J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, 2004, 831 pp.
[3] Badriev I. B., Paimushin V. N., “Refined Models of Contact Interaction of a Thin Plate with Positioned on Both Sides Deformable Foundations”, Lobachevskii J. Math., 38:5 (2017), 779–793 | DOI | MR | Zbl
[4] Birman V., Vo N., “Wrinkling in sandwich structures with a functionally graded core”, J. Appl. Mech., 84:2 (2017), Art. 021002, 8 pp.
[5] Zenkert D., An Introduction to Sandwich Construction, Chameleon Press Ltd., London, 1995, 277 pp.
[6] Crupi V., Epasto G., Guglielmino E., “Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam”, Marine Structures, 30 (2013), 74–96 | DOI
[7] Vasiliev V. V., Morozov E. V., Advanced Mechanics of Composite Materials and Structural Elements, Elsevier, 2013, 832 pp.
[8] Sutherland L., Soares G., “Impact behavior of typical marine composite laminates”, Composites: Part B, 37:2–3 (2006), 89–100
[9] Johnson H. E., Louca L. A., Mouring S., Fallah A. S., “Modelling impact damage in marine composite panels”, Int. J. Impact Eng., 36:1 (2009), 25–39 | DOI
[10] Vasil'ev V. V., Dobryakov A. A., Dudchenko A. A., Fundamentals of the Planning and Production of Aircraft Structures Made of Composite Materials, MAI, Moscow, 1985, 218 pp. (In Russian)
[11] Takeda N., Minakuchi S., Okabe Y., “Smart composite sandwich structures for future aerospace application damage detection and suppression: A review”, J. Solid Mechanics and Materials Engineering, 1:1 (2007), 3–17 | DOI
[12] Minjing L., Zhanjun W., “Application of composite honeycomb sandwich structure in aircraft”, Sci. Technol. Rev., 34:8 (2016), 21–25 (In Chinese)
[13] Seibert H. F., “Composite materials for aerospace applications”, Bull. Materials Sci., 22:3 (1999), 657–664 | DOI
[14] Crump D. A., Dulieu-Barton J. M., Savage J., “The Manufacturing Procedure for Aerospace Secondary Sandwich Structure Panels”, J. Sandwich Structures Materials, 12:4 (2010), 421–447 | DOI
[15] Grigolyuk E. I., Chulkov P. P., Stability and Vibrations of Sandwich Shells, Mashinostroenie, Moscow, 1973, 168 pp. (In Russian)
[16] Bolotin V. V., Novichkov Y. N., Mechanics of Multilayered Structures, Mashinostroenie, Moscow, 1980, 375 pp. (In Russian)
[17] Grigolyuk E. I., Kogan F. A., “Present State of the Theory of Multilayered Shells”, Prikl. Mekh., 8:6 (1972), 5–17 (In Russian)
[18] Paimushin V. N., “Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure”, Sov. Appl. Mech., 23:11 (1987), 1038–1043 | DOI
[19] Ivanov V. A., Paimushin V. N., “An improved theory of the stability of three-layer structures (non-linear equations for the subcritical equilibrium of shells with a transversely soft filler)”, Russ. Math., 38:11 (1994), 26–39 | MR | Zbl
[20] Paimushin V. N., Bobrov S. N., “Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms”, Mechanics of Composite Materials, 36:1 (2000), 59–66 | DOI
[21] Noor A. K., Burton W. S., Bert Ch. W., “Computational models for sandwich panels and shells”, Appl. Mech. Rev., 49:3 (1996), 155–199 | DOI
[22] Paimushin V. N., “The theory of stability of sandwich plates and shells (stages of development, current state and directions of further research)”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2001, no. 2, 148–162 (In Russian)
[23] Badriev I. B., Makarov M. V., Paimushin V. N., “Numerical Investigation of physically nonlinear problem of sandwich plate bending”, Procedia Eng., 150 (2016), 1050–1055 | DOI
[24] Badriev I. B., Banderov V. V., Makarov M. V., “Mathematical Simulation of the problem of the pre-critical sandwich plate bending in geometrically nonlinear one dimensional formulation”, IOP Conf. Ser.: Materials Science and Engineering, 208 (2017), Art. 012002, 7 pp.
[25] Badriev I. B., Garipova G. Z., Makarov M. V., Paymushin V. N., “Numerical solution of the issue about geometrically nonlinear behavior of sandwich plate with transversal soft filler”, Res. J. Appl. Sci., 10:8 (2015), 428–435
[26] Badriev I. B., Makarov M. V., Paimushin V. N., “Solvability of physically and geometrically nonlinear problem of the theory of sandwich plates with transversally-soft core”, Russ. Math., 59:10 (2015), 57–60 | DOI | MR | Zbl
[27] Badriev I. B., Garipova G. Z., Makarov M. V., Paimushin V. N., Khabibullin R.F., “Solving physically nonlinear equilibrium problems for sandwich plates with a transversally soft core”, Lobachevskii J. Math., 36:4 (2015), 474–481 | DOI | MR | Zbl
[28] Badriev I. B., Makarov M. V., Paimushin V. N., “Numerical investigation of a physically nonlinear problem of longitudinal bending of sandwich plate with transversal-soft core”, PNRPU Mech. Bull., 2017, no. 1, 39–51 (In Russian)
[29] Paimushin V. N., “Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour”, Mechanics of Composite Materials, 53:1 (2017), 1–16 | DOI
[30] Badriev I. B., Makarov M. V., Paimushin V. N., “Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversally-soft core”, Russ. Math., 61:1 (2017), 69–75 | DOI | MR | Zbl
[31] Paimushin V. N., “Variational methods for solving non-linear spatial problems of the joining of deformable bodies”, Dokl. Akad. Nauk SSSR, 273:5 (1983), 1083–1086 (In Russian) | MR
[32] Badriev I. B., Makarov M. V., Paimushin V. N., “Longitudinal and transverse bending on the cylindrical shape of a sandwich plate reinforced with absolutely rigid bodies in the front sections”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 2, 2017, 174–190 (In Russian)
[33] Dautov R. Z., Paimushin V. N., “On the method of integrating matrices for the solution of boundary value problems for fourth-order ordinary equations”, Russ. Math., 40:10 (1996), 11–13 | MR | Zbl
[34] Dautov R. Z., Karchevskii M. M., Paimushin V. N., “On the method of integrating matrices for systems of ordinary differential equations”, Russ. Math., 47:7 (2003), 16–24 | MR | Zbl
[35] Vakhitov M. B., “Integrating matrices as a means of numerical solution of differential equations in structural dynamics”, Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 1966, no. 3, 50–61 (In Russian)
[36] Badriev I. B., Makarov M. V., Paimushin V. N., “Longitudinal and transverse bending by a cylindrical shape of the sandwich plate stiffened in the end sections by rigid bodies”, IOP Conf. Ser Materials Science and Engineering, 158 (2016), Art. 012011, 9 pp.
[37] Badriev I. B., Makarov M. V., Paimushin V. N., “Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 4, 2016, 453–468 (In Russian)
[38] Karchevskii M. M., “Iteration schemes for equations with monotone operators”, Izv. Vyssh. Uchebn. Zaved., Mat., 1971, no. 5, 32–37 (In Russian) | MR | Zbl
[39] Badriev I. B., Makarov M. V., Paimushin V. N., “Mathematical Simulation of Nonlinear Problem of Three-point Composite Sample Bending Test”, Procedia Eng., 150 (2016), 1056–1062 | DOI
[40] Vainberg M. M., Variational Method and Monotone Operators Method, Nauka, Moscow, 1972, 416 pp. (In Russian) | MR
[41] Grigolyuk E. I., Shalashilin V. I., Problems of Nonlinear Deformation: Parameter Continuation Method in Nonlinear Problems of Solid Mechanics, Nauka, Moscow, 1988, 231 pp. (In Russian) | MR
[42] Shalashilin V. I., Kuznetsov E. B., Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Kluwer Acad. Publ., Dordrecht–Boston–London, 2003, 236 pp. | MR | MR | Zbl