Petroleum reservoir simulation using super-element method with local detalization of the solution
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 327-339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we propose a two-stage method for petroleum reservoir simulation. The method uses two models with different degrees of detailization to describe the hydrodynamic processes of different space-time scales. At the first stage, the global dynamics of the energy state of the deposit and reserves has been modeled (characteristic scale of such changes is km/year). The two-phase flow equations in the model of global dynamics operate with smooth averaged pressure and saturation fields, and they are solved numerically on a large computational grid of super-elements with a characteristic cell size of 200–500 m. The tensor coefficients of the super-element model have been calculated using special procedures of upscaling of absolute and relative phase permeabilities. At the second stage, a local refinement of the super-element model has been constructed for calculating small-scale processes (with a scale of m/day), which take place, for example, during various geological and technical measures aimed at increasing the oil recovery of a reservoir. Then we solve the two-phase flow problem in the selected area of the measure exposure on a detailed three-dimensional grid, which resolves the geological structure of the reservoir, and with a time step sufficient for describing fast-flowing processes. The initial and boundary conditions of the local problem have been formulated on the basis of the super-element solution. To demonstrate the proposed approach, we have provided an example of the two-stage modeling of the development of a layered reservoir with a local refinement of the model during the isolation of a water-saturated high-permeability interlayer. We have shown a good compliance between the locally refined solution of the super-element model.
Keywords: super-element method, numerical simulation, petroleum reservoir, local refinement, reservoir treatments simulation, two-phased flow, downscaling.
@article{UZKU_2017_159_3_a5,
     author = {A. B. Mazo and K. A. Potashev},
     title = {Petroleum reservoir simulation using super-element method with local detalization of the solution},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {327--339},
     year = {2017},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a5/}
}
TY  - JOUR
AU  - A. B. Mazo
AU  - K. A. Potashev
TI  - Petroleum reservoir simulation using super-element method with local detalization of the solution
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 327
EP  - 339
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a5/
LA  - ru
ID  - UZKU_2017_159_3_a5
ER  - 
%0 Journal Article
%A A. B. Mazo
%A K. A. Potashev
%T Petroleum reservoir simulation using super-element method with local detalization of the solution
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 327-339
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a5/
%G ru
%F UZKU_2017_159_3_a5
A. B. Mazo; K. A. Potashev. Petroleum reservoir simulation using super-element method with local detalization of the solution. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 327-339. http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a5/

[1] Durlofsky L. J., “Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing upscaling techniques”, Comput. Geosci., 2:2 (1998), 73–92 | DOI | MR

[2] Beliaev A. Yu., Averaging in Problems of the Theory of Fluid Flow in Porous Media, Nauka, Moscow, 2004, 200 pp. (In Russian)

[3] Mazo A. B., Potashev K. A., “Upscaling of absolute phase permeabilities for superelement modeling of petroleum reservoir”, Mat. Model., 29:6 (2017), 89–102 (In Russian) | MR

[4] Mazo A. B., Potashev K. A., “Upscaling relative phase permeability for superelement modeling of petroleum reservoir engineering”, Math. Model. Comput. Simul., 9:5 (2017), 570–579 | DOI | MR

[5] Aarnes J. E., Kippe V., Lie K.-A., “Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels”, Adv. Water. Res., 28:3 (2005), 257–271 | DOI

[6] Efendiev Y., Ginting V., Hou T., Ewing R., “Accurate multiscale finite element methods for two-phase flow simulations”, J. Comput. Phys., 220:1 (2006), 155–174 | DOI | MR

[7] Jenny P., Lee S., Tchelepi H., “Adaptive fully implicit multiscale finite-volume methods for multi-phase flow and transport in heterogeneous porous media”, J. Comput. Phys., 217:2 (2006), 627–641 | DOI | MR

[8] Pergament A. Kh., Semiletov V. A., Tomin P. Yu., “On some multiscale algorithms for sector modeling in multiphase flow in porous media”, Math. Models Comput. Simul., 3:3 (2011), 365–374 | DOI | MR

[9] Mazo A. B., Bulygin D. V., “Superelements. New approach to oil reservoir simulation”, Neft'. Gaz. Novatsii, 11 (2011), 6–8 (In Russian)

[10] Mazo A. B., Potashev K. A., Kalinin E. I., Bulygin D. V., “Oil reservoir simulation with the superelement method”, Mat. Model., 25:8 (2013), 51–64 (In Russian) | MR

[11] Bulygin D. V., Mazo A. B., Potashev K. A., Kalinin E. I., “Geological and technical aspects of superelement model of oil reservoirs”, Georesursy, 53:3 (2013), 31–35 (In Russian)

[12] Mazo A., Potashev K., Kalinin E., “Petroleum reservoir simulation using super element method”, Proc. Earth Planet. Sci., 15 (2015), 482–487 | DOI

[13] Mazo A. B., Potashev K. A., “Upscaling of absolute permeability for a super-element model of petroleum reservoir”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), Art. 012068, 6 pp.

[14] Potashev K. A., Abdrashitova L. R., “Account for the heterogeneity of waterflooding in the well drainage area for large-scale modeling of oil reservoir”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 1, 2017, 116–129 (In Russian) | MR

[15] Barenblatt G. I., Entov V. M., Ryzhik V. M., Theory of Fluid Flow Through Natural Rocks, Kluwer Acad. Publ., London, 1990, 396 pp.

[16] Potashev K. A., Mazo A. B., Ramazanov R. G., Bulygin D. V., “Analysis and design of a section of an oil reservoir using a fixed stream tube model”, Neft'. Gaz. Novatsii, 187:4 (2016), 32–40 (In Russian)

[17] Kozeny J., “Uber kapillare Leitung des Wassers im Boden”, Sitzungsber Akad. Wiss. (Wien), 136, pt. 2a (1927), 271–306 (In German)

[18] Stiles W. E., “Use of permeability distribution in waterflood calculations”, J. Pet. Technol., 1:1 (1949), 9–13 | DOI

[19] Dykstra H., Parsons R., “The prediction of oil recovery by waterflooding”, Secondary Oil Recovery of Oil in the United States, API, Washington, DC, 1950, 160–174 (In Russian)

[20] Bulygin V. Ya., Hydromechanics of the Oil Reservoir, Nedra, Moscow, 1974, 232 pp. (In Russian)