@article{UZKU_2017_159_3_a4,
author = {A. V. Kazantsev},
title = {On the exit of the {Gakhov} set along the family of {Avkhadiev's} classes},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {318--326},
year = {2017},
volume = {159},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a4/}
}
TY - JOUR AU - A. V. Kazantsev TI - On the exit of the Gakhov set along the family of Avkhadiev's classes JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2017 SP - 318 EP - 326 VL - 159 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a4/ LA - ru ID - UZKU_2017_159_3_a4 ER -
%0 Journal Article %A A. V. Kazantsev %T On the exit of the Gakhov set along the family of Avkhadiev's classes %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2017 %P 318-326 %V 159 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a4/ %G ru %F UZKU_2017_159_3_a4
A. V. Kazantsev. On the exit of the Gakhov set along the family of Avkhadiev's classes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 318-326. http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a4/
[1] Avkhadiev F. G., Aksent'ev L. A., Elizarov A. M., “Sufficient conditions for the finite-valence of analytic functions, and their applications”, J. Sov. Math., 49:1 (1990), 715–799 | DOI | MR | Zbl | Zbl
[2] Avkhadiev F. G., Conformal Mappings and Boundary Value Problems, Kazan. Fond “Mat.”, Kazan, 1996, 216 pp. (In Russian) | MR
[3] Kazantsev A. V., “On the exit out of the Gakhov set controlled by the subordination conditions”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 1, 2014, 31–43 (In Russian)
[4] Kazantsev A. V., “On the linear connectivity of the regular part of Gakhov set”, Vestn. Volgogr. Gos. Univ., Ser. 1: Mat., Fiz., 2016, no. 6, 55–60 (In Russian)
[5] Lehto O., “Univalent functions, Schwarzian derivatives and quasiconformal mappings”, Monogr. Ensegn. Math., 1979, no. 2, 73–84 | MR
[6] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966, 628 pp. (In Russian) | MR
[7] Avkhadiev F. G., Aksent'ev L. A., “The main results on sufficient conditions for an analytic function to be schlicht”, Russ. Math. Surv., 30:4 (1975), 1–63 | DOI | MR | Zbl
[8] Aksent'ev L. A., Khokhlov Ju. E., Shirokova E. A., “Uniqueness of solution of an exterior inverse boundary value problem”, Math. Notes, 24:3 (1978), 672–678 | DOI | MR | Zbl
[9] Gubaydullina S. A., Kazantsev A. V., “On some conditions for the uniqueness of a root of Gakhov's equation”, Tr. Mat. Tsentra im. N. I. Lobachevskogo, 54, Kazan. Mat. O-vo, Kazan, 2017, 135–136 (In Russian) | MR