Degree spectra of the block relation of $1$-computable linear orders
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 296-305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study the intrinsically computably enumerable relations on linear orderings, such as the successor relation on computable linear orderings and the block relation on $1$-computable linear orderings. For ease of reading, the linear ordering , in which the signature is enriched with the successor relation, is called $1$-computable linear ordering. This notion is consistent with the known results. We have proved that for any $\mathbf0'$-computable linear ordering $L$ there exists a $1$-computable linear ordering, in which the degree spectrum of the block relation coincides with the $\Sigma_1^0$-spectrum of the linear ordering $L$. The degree spectrum of the block relation of a linear ordering $R$ is called the class of Turing degrees of the images of the block relation on computable presentations of $R$; and $\Sigma_1^0$-spectrum of a linear ordering $L$ is called the class of Turing enumerable degrees of $L$. This obtained result provides a number of examples of the spectra of the block relation of $1$-computable linear orderings. In particular, the class of all enumerable high$_n$ degrees and the class of all enumerable non-low$_n$ degrees are realized by the spectra of the block relation of some $1$-computable linear orderings.
Keywords: linear orders, $1$-computability, block relation, successivity relation, intrinsically computably enumerable relations.
Mots-clés : spectra of relations
@article{UZKU_2017_159_3_a2,
     author = {R. I. Bikmukhametov and M. S. Eryashkin and A. N. Frolov},
     title = {Degree spectra of the block relation of $1$-computable linear orders},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {296--305},
     year = {2017},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a2/}
}
TY  - JOUR
AU  - R. I. Bikmukhametov
AU  - M. S. Eryashkin
AU  - A. N. Frolov
TI  - Degree spectra of the block relation of $1$-computable linear orders
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 296
EP  - 305
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a2/
LA  - ru
ID  - UZKU_2017_159_3_a2
ER  - 
%0 Journal Article
%A R. I. Bikmukhametov
%A M. S. Eryashkin
%A A. N. Frolov
%T Degree spectra of the block relation of $1$-computable linear orders
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 296-305
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a2/
%G ru
%F UZKU_2017_159_3_a2
R. I. Bikmukhametov; M. S. Eryashkin; A. N. Frolov. Degree spectra of the block relation of $1$-computable linear orders. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 296-305. http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a2/

[1] Ash C. J., Nerode A., “Intrinsically recursive relations”, Aspects of Effective Algebra, ed. Crossley J. N., U.D.A. Book Co., Steel's Greek, Australia, 1981, 26–41 | MR

[2] Hirschfeldt D. R., “Degree spectra of intrinsically c.e. relations”, J. Symb. Logic, 66:2 (2001), 441–469 | DOI | MR

[3] Frolov A. N., “Linear orderings of low degrees”, Sib. Math. J., 51:5 (2010), 913–925 | DOI | MR

[4] Montalban A., “Notes on the jump of a structure”, Mathematical Theory and Computational Practice, 5th Conf. on Computability in Europe (CiE 2009), Lecture Notes in Computer Science, 5635, eds. K. Ambos-Spies, B. Löwe, W. Merkle, Springer-Verlag, Berlin, 2009, 372–378 | DOI | MR

[5] Remmel J. B., “Recursively categorical linear orderings”, Proc. Am. Math. Soc., 83:2 (1981), 387–391 | DOI | MR

[6] Moses M., “Relations intrinsically recursive in linear orders”, Z. Math. Logik Grundlag. Math., 32 (1986), 467–472 | DOI | MR

[7] Hirschfeldt D. R., “Degree spectra of relations on computable structures in the presence of $\Delta^0_2$ isomorphisms”, J. Symb. Logic, 67:2 (2002), 697–720 | DOI | MR

[8] Frolov A. N., “Presentations of the successor relation of computable linear orderings”, Russ. Math., 2010, no. 7, 64–74 | DOI | MR

[9] Chubb J., Frolov A., Harizanov V., “Degree spectra of successivities of linear orderings”, Arch. Math. Logic, 48:1 (2009), 7–13 | DOI | MR

[10] Harizanov V., Degree spectrum of a recursive relation on a recursive structure, Ph. D. Thesis, University of Wisconsin, Madison, USA, 1987, 170 pp. | MR

[11] Moses M., “Recursive linear orders with recursive successivities”, Ann. Pure Appl. Logic, 27:3 (1984), 253–264 | DOI | MR

[12] Frolov A. N., “Low linear orderings”, J. Logic Comput., 22:4 (2012), 745–754 | DOI | MR

[13] Alaev P. E., Frolov A. N., Thurber J., “Computability on linear orderings enriched with predicates”, Algebra Logic, 48:5 (2009), 313–320 | DOI | MR | Zbl

[14] Frolov A. N., “Scattered linear orderings with no computable presentation”, Lobachevskii J. Math., 35:1 (2014), 19–22 | DOI | MR

[15] Zubkov M. V., “Initial segments of computable linear orders with additional computable predicates”, Algebra Logic, 48:5 (2009), 321–329 | DOI | MR | Zbl

[16] Turner W. P., Computable linear orders and Turing reductions, Master's Thesis, University of Connecticut, 2012

[17] Bikmukhametov R. I., “Initial segments of computable linear orders with computable natural relations”, Russ. Math., 60:6 (2016), 12–20 | DOI | MR

[18] Bikmukhametov R. I., “$\Sigma^0_2$-initial segments of computable linear orders”, Algebra Logic, 53:3 (2014), 266–267 | DOI | MR

[19] Bikmukhametov R. I., “Codings on linear orders and algorithmic independence of natural relations”, Lobachevskii J. Math., 35:4 (2014), 326–331 | DOI | MR

[20] Bikmukhametov R. I., “Algorithmic independence of natural relations on computable linear orders”, Uchenye Zapiski Kazanskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 155, no. 3, 2013, 80–90 (In Russian) | MR

[21] Miller R., “The $\Delta_2^0$ spectrum of a linear ordering”, J. Symb. Logic, 66 (2001), 470–486 | DOI | MR

[22] Frolov A. N., “$\Delta_2^0$-copies of linear orderings”, Algebra logic, 45:3 (2006), 201–209 | DOI | MR | Zbl

[23] Frolov A. N., “A note on $\Delta^0_2$-spectra of linear orderings and degree spectra of the successor relation”, Russ. Math., 57:11 (2013), 65–68 | DOI | MR

[24] Frolov A., Harizanov V., Kalimullin I., Kudinov O., Miller R., “Spectra of high$_n$ and non-low$_n$ degrees”, J. Logic Comput., 22:4 (2012), 745–754 | DOI | MR