Degree spectra of the block relation of $1$-computable linear orders
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 296-305
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
In this paper, we study the intrinsically computably enumerable relations on linear orderings, such as the successor relation on computable linear orderings and the block relation on $1$-computable linear orderings. For ease of reading, the linear ordering , in which the signature is enriched with the successor relation, is called $1$-computable linear ordering. This notion is consistent with the known results. We have proved that for any $\mathbf0'$-computable linear ordering $L$ there exists a $1$-computable linear ordering, in which the degree spectrum of the block relation coincides with the $\Sigma_1^0$-spectrum of the linear ordering $L$. The degree spectrum of the block relation of a linear ordering $R$ is called the class of Turing degrees of the images of the block relation on computable presentations of $R$; and $\Sigma_1^0$-spectrum of a linear ordering $L$ is called the class of Turing enumerable degrees of $L$. This obtained result provides a number of examples of the spectra of the block relation of $1$-computable linear orderings. In particular, the class of all enumerable high$_n$ degrees and the class of all enumerable non-low$_n$ degrees are realized by the spectra of the block relation of some $1$-computable linear orderings.
Keywords:
linear orders, $1$-computability, block relation, successivity relation, intrinsically computably enumerable relations.
Mots-clés : spectra of relations
Mots-clés : spectra of relations
@article{UZKU_2017_159_3_a2,
author = {R. I. Bikmukhametov and M. S. Eryashkin and A. N. Frolov},
title = {Degree spectra of the block relation of $1$-computable linear orders},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {296--305},
publisher = {mathdoc},
volume = {159},
number = {3},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a2/}
}
TY - JOUR AU - R. I. Bikmukhametov AU - M. S. Eryashkin AU - A. N. Frolov TI - Degree spectra of the block relation of $1$-computable linear orders JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2017 SP - 296 EP - 305 VL - 159 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a2/ LA - ru ID - UZKU_2017_159_3_a2 ER -
%0 Journal Article %A R. I. Bikmukhametov %A M. S. Eryashkin %A A. N. Frolov %T Degree spectra of the block relation of $1$-computable linear orders %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2017 %P 296-305 %V 159 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a2/ %G ru %F UZKU_2017_159_3_a2
R. I. Bikmukhametov; M. S. Eryashkin; A. N. Frolov. Degree spectra of the block relation of $1$-computable linear orders. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 296-305. http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a2/