Estimating the appearance of shock waves in the cavitation bubble during its collapse
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 271-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The possibility of appearance of convergent shock waves inside a cavitation bubble during its collapse in acetone and tetradecane has been estimated. The liquid pressure varied from 1 to 100 bar, its temperature changed from 293 K to the values of 419 K for acetone and 663 K for tetradecane, respectively, which are close to the critical ones. With these values, the saturated pressure of vapor of both liquids was equal to 10 bar. The initial radius of the bubble was 500 $\mu$m. A simplified mathematical formulation without taking into account thermal conductivity and evaporation-condensation has been used. The distribution of thermodynamic parameters of vapor in the bubble has been assumed to be homogeneous, the state of vapor has been described by the Van der Waals type equation, the weak compressibility of the liquid at a large distance from the bubble has been taken into consideration. Under these assumptions, the bubble dynamics has been determined by solving the second-order ordinary differential Rayleigh–Plesset equation. The possibility of appearance of a shock wave in the bubble during its collapse has been estimated by a criterion including only the vapor thermodynamic parameters from the bubble boundary and some characteristics of its motion. That criterion also makes it possible to predict the time and place of shock wave formation. The solution to the Rayleigh–Plesset equation has been obtained numerically by the highly accurate Runge–Kutta method. According to the numerical experiments, if the liquid temperature is 293 K, shock waves inside the cavitation bubble arise at the liquid pressures starting from 5 bar in the case of acetone or appear in the entire investigated range in the case of tetradecane. At the acetone temperature of 419 K and the tetradecane temperature of 663 K, shock waves are formed at the liquid pressures starting from 80 and 15 bar, respectively.
Mots-clés : acoustic cavitation
Keywords: bubble dynamics, bubble collapse, converging shock waves.
@article{UZKU_2017_159_3_a0,
     author = {A. A. Aganin and D. Yu. Toporkov},
     title = {Estimating the appearance of shock waves in the cavitation bubble during its collapse},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {271--281},
     year = {2017},
     volume = {159},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a0/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - D. Yu. Toporkov
TI  - Estimating the appearance of shock waves in the cavitation bubble during its collapse
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 271
EP  - 281
VL  - 159
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a0/
LA  - ru
ID  - UZKU_2017_159_3_a0
ER  - 
%0 Journal Article
%A A. A. Aganin
%A D. Yu. Toporkov
%T Estimating the appearance of shock waves in the cavitation bubble during its collapse
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 271-281
%V 159
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a0/
%G ru
%F UZKU_2017_159_3_a0
A. A. Aganin; D. Yu. Toporkov. Estimating the appearance of shock waves in the cavitation bubble during its collapse. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 3, pp. 271-281. http://geodesic.mathdoc.fr/item/UZKU_2017_159_3_a0/

[1] Colmenares J. C., Chatel G., Sonochemistry. From Basic Principles to Innovative Applications, Springer, 2017, 281 pp.

[2] Moss W. C., Clarke D. B., Young D. A., “Calculated pulse widths and spectra of a single sonoluminescing bubble”, Science, 276 (1997), 1398–1401 | DOI

[3] Margulis M. A., “Sonoluminescence”, Phys.-Usp., 43:3 (2000), 259–282 | DOI | DOI

[4] Galimov E. M., Kudin A. M., Skorobogatskii V. N., Plotnichenko V. G., Bondarev O. L., Zarubin B. G., Strazdovskii V. V., Aronin A. S., Fisenko A. V., Bykov I. V., Barinov A. Yu., “Experimental corroboration of the synthesis of diamond in the cavitation process”, Dokl. Phys., 49:3 (2004), 150–153 | DOI

[5] Voropaev S. A., Shkinev V. M., Dnestrovskii A. Yu., Ponomareva E. A., Aronin A. S., Bondarev O. L., Strazdovskii V. V., Skorobogatskii V. N., Eliseev A. A., Spivakov B. Ya., Galimov E. M., “Synthesis of diamondlike nanoparticles under cavitation in toluene”, Dokl. Phys., 57:10 (2012), 373–377 | DOI

[6] Voropaev S. A., Dnestrovskii A. Yu., Skorobogatskii V. N., Aronin A. S., Shkinev V. M., Bondarev O. L., Strazdovskii V. V., Eliseev A. A., Ponomareva E. A., Dushenko N. V., Galimov E. M., “Experimental study into the formation of nanodiamonds and fullerenes during cavitation in an ethanol-aniline mixture”, Dokl. Phys., 59:11 (2014), 503–506 | DOI | DOI

[7] Taleyarkhan R. P., West C. D., Cho J. S., Lahey R. T. (Jr.), Nigmatulin R. I., Block R. C., “Evidence for nuclear emissions during acoustic cavitation”, Science, 295 (2002), 1868–1873 | DOI

[8] Nigmatulin R. I, Akhatov I. Sh., Topolnikov A. S., Bolotnova R. Kh., Vakhitova N. K., Lahey R. T. (Jr.), Taleyarkhan R. P., “The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion”, Phys. Fluids, 17:10 (2005), Art. 107106, 31 pp. | DOI

[9] Khabeev N. S., “The question of the uniform-pressure condition in bubble dynamics”, Fluid Dyn., 45:2 (2010), 208–210 | DOI

[10] Shaw S. J., Spelt P. D. M., “Shock emission from collapsing gas bubbles”, J. Fluid Mech., 646 (2010), 363–373 | DOI

[11] Bass A., Ruuth S. J., Camara C., Merriman B., Putterman S., “Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble”, Phys. Rev. Lett., 101:23 (2008), Art. 234301, 4 pp. | DOI

[12] Nigmatulin R. I., Aganin A. A., Toporkov D. Yu., Il'gamov M. A., “Formation of convergent shock waves in a bubble upon its collapse”, Dokl. Phys., 59:9 (2014), 431–435 | DOI | DOI | MR

[13] Aganin A. A., Il'gamov M. A., Toporkov D. Yu., “Dependence of vapor compression inside cavitation bubbles in water and acetone on the pressure of liquid”, Vestn. Bashk. Univ., 20:3 (2015), 807–812 (In Russian)

[14] Khalitova T. F., Toporkov D. Yu., “Numerical investigation of strong compression of vapor inside spherical cavitation bubbles”, IOP Conf. Series: Materials Science and Engineering, 158:1 (2016), Art. 012052, 5 pp.

[15] Hairer E., Norsett S., Wanner G., Solving Ordinary Differential Equations. Nonstiff Problems, Springer, Berlin, 1993, 528 pp. | MR | MR